Nearby physical examples of solar system forces on the 100 kg man

We can estimate these solar system forces compared to the change in weight this person feels. Consider the extra weight certain objects made from pieces of paper will make. We will use as a standard the weight of standard printer paper, 8.5 "x11".

800 sheets of printer paper weigh about 9.25 lb . This corresponds to $4196 \mathrm{~g}=4.196 \mathrm{~kg}$
Thus each sheet has a mass of $4196 \mathrm{~g} / 800$ sheets $=5.24 \mathrm{~g} /$ sheet
The area in cm^{2} is $8.5 " \times 11^{\prime \prime *}(2.54 \mathrm{~cm} / \mathrm{in}) 2=603 \mathrm{~cm}^{2}$ thus
areal density $\rho=5.24 \mathrm{~g} /\left(603 \mathrm{~cm}^{2}\right)=8.69 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{2}=8.69 \times 10^{-6} \mathrm{~kg} / \mathrm{cm}^{2}$
Since we want to compare forces here on earth we can convert the areal density in weight/ cm^{2}
We use $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for the acceleration at the surface to obtain the weight $/ \mathrm{cm}^{2}$ to $\mathrm{N} / \mathrm{cm}^{2}$.
Weight density, $\rho_{\mathrm{N}}=9.8 * 8.69 \times 10^{-6} \mathrm{~kg} / \mathrm{cm}^{2}=8.52 \times 10^{-5} \mathrm{~N} / \mathrm{cm}^{2}$
force $=$ Area ${ }^{*} \rho_{\mathrm{N}}$, so Area $=$ force $/ \rho_{\mathrm{N}}$

Object	Force in Newtons	Area of paper in cm^{2}	example
earth	979.9 N	1.15×10^{7}	19064 sheets of paper
sun	0.59 N	6928	11.5 sheets of paper
moon	$3.32 \times 10^{-3} \mathrm{~N}$	39	$6.2 \times 6.2 \mathrm{~cm}^{2}$
Jupiter	$3.12 \times 10^{-5} \mathrm{~N}$	0.38	$6.2 \times 6.2 \mathrm{~mm}^{2}$
Venus	$1.84 \times 10^{-5} \mathrm{~N}$	0.22	$4.7 \times 4.7 \mathrm{~mm}^{2}$
mosquito	$2.45 \times 10^{-5} \mathrm{~N}$	0.3	$5.5 \times 5.5 \mathrm{~mm}^{2}$

You can cut the pieces of paper to these sizes in order to get a physical feel for the effects of the solar system on our 100 kg man. So the force of the moon on the 100 kg man is about the same as carrying an extra sheet of paper of size $6 \mathrm{~cm} \times 6.5 \mathrm{~cm}$ in his pockets.

If your mass is M then the forces and the areas for you are adjusted to
$F(M)=(M / 100 \mathrm{~kg}) F(100 \mathrm{~kg}) ., 1 \mathrm{~kg}$ weighs 2.205 lb
For example, if your mass is 50 kg your weight is 110.3 lbs , the force from the sun on you is
$\operatorname{Fsun}(50 \mathrm{~kg})=(50 \mathrm{~kg} / 100 \mathrm{~kg}) * 0.59 \mathrm{~N}=0.285 \mathrm{~N}$

