
Converting heliocentric circular orbits to geo-
centric orbits
Parameters for an outer planet
The heliocentric parameters
We will consider the conversion of simple circular heliocentric orbits to geocen-
tric orbits with a goal to find the deferent radius and epicycle radius and the
corresponding periods in the geocentric reference frame. From the geometry in
Fig. 1 we see the displacement from the earth to the planet is given by

~r = ~rp − ~re (1)

and the magnitude of the displacement is obtained from

r2 = r2
p + r2

e − 2~re · ~rp = r2
p + r2

e − 2rerpcos(θe − θp) (2)

The earth and planet move at constant angular velocities ωe, ωp

The geocentric parameters
In the geocentric system it is assumed that the planet moves around the epicy-
cle at constant angular velocity ωC . The angle of anomaly, α = α0 + ωCt, is
measured between the epicycle radius RC and the deferent radius RD, See Fig.
2. Note that zero angular velocity in the epicycle corresponds to RC always
remaining parallel to RD. The center of the epicycle, C, lies on the deferent
circle and the radius of the deferent makes an angle β = β0 +ωDt with repect to
the x axis. The deferent radius rotates at constant angular velocity ωD. From
Fig. 2 we see that the displacement between the earth and planet is

~r = ~RD + ~RC (3)

Consequently the displacement between the earth and the planet is obtained
from

r2 = (~RD + ~RC) · (~RD + ~RC) = R2
D + R2

C + 2RDRCcos(α) (4)

We note that the two equations, 2 and 4, refer to the same displacement between
the earth and the planet. Consquently

R2
D + R2

C + 2RDRCcos(α) = r2
p + r2

e − 2rerpcos(θe − θp). (5)

In equation 5 we have a time independent part and a time dependent part. In
order for equation 5 to be true at all times the time independent parts must be
equal and the time dependent parts must be equal.

R2
D + R2

C = r2
p + r2

e (6)

and
2RDRCcos(α) = −2rerpcos(θe − θp) (7)

The radii are always positive so in equation 7 the sign difference must be related
to the angles. Also θe − θp = (ωe − ωp)t so

α = α0 + ωCt = (ωe − ωp)t (8)
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From equation 8 we conclude that α0 = π and ωCt = (ωe−ωp)t. From equation
7 we can show that there are two possible solutions.

RD = rp, RC = re, (solution1) (9)

or
RD = re, RC = rp, (solution2) (10)

Now we decide which solution from eqns. 9, 10, corresponds to the physi-
cally accessible solution. For this we investigate Fig. 3. Consider diagram (a)
which shows the heliocentric arrangement of the sun-earth-planet (sep) for the
distance of closest approach between the earth and an outer planet. There must
be such a configuration and we define the x axis as the line connecting these
three colinear points. The earth must lie between the sun and the planet. In the
case of diagram (b), the geocentric solution 1, RD = rp and RC = re. Here the
arrangement of sep is the same as in the heliocentric reference frame. We also
note that α = π. In the case of diagram (c), the geocentric solution 2, RD = re

and RC = rp. Here the sun lies between the earth and the planet. Changing
the reference frames from heliocentric to geocentric can not change the physical
arrangement of the sun-earth-planet configuration. Hence, for an outer planet
viewed from earth we require solution 1.

Next we need to determine the angular velocity of the deferent (point C in
Fig. 4). We consider the time dependence of the x component of r, rx. Write
the x component in both heliocentric and geocentric terms.

rx = rpcos(θp) − recos(θe) = rpcos(ωpt) − recos(ωet). (11)

rx = RDcos(β) + RCcos(α + β) (12)

In eqn 12 we have β = β0 + ωDt and α = α0 + ωCt = π + (ωe − ωp)t. We use
these facts in eqns 11 and 12.

rpcos(ωpt)− recos(ωet) = RDcos(β) + RCcos(α + β) = rpcos(β) + recos(α + β)
(13)

rpcos(ωpt)−recos(ωet) = rpcos(β0+ωDt)+recos(π+(ωe−ωp)t+β0+ωDt) (14)

In eqn 14 we compare the terms multiplying rp and see that consistent results
can be obtained with the following set of choices: β0 = 0, ωD = ωp. We sum-
marize the parameter choices for an outer planet.
RD = rp, RC = re, ωD = ωp, ωC = ωe − ωp

Parameters for an inner planet

If we consider the motion of the earth from the perspective of the outer planet
this must give the same value of r and RD, RC . The argument assigning the
deferent radius RD essentially assigns RD to the larger of the two orbits. This
argument depended on conserving the order sep for the colinear configuration
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Figure 1: Circular orbits in the heliocentric reference frames. The earth and
planet are at radii re, rp. The radius of the earth is at an angle θe and the
planet’s radius is at angle θp. The sun, s, is the origin of coordinates.

leading to smallest distance of approach. This argument also applies to the
inner planet as viewed from earth. All we are doing is interchanging the labels
p for e for an inner planet. So in either case when we convert to a geocentric
reference frame we can summarize the results.

RD =larger orbit, RC =smaller orbit, ωD = angular velocity of the larger orbit

ωC = absolute value of the difference ωe − ωp
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Figure 2: Circular orbits in the geocentric system with a deferent orbit, RD,
and an epicycle radius, RC . The angle of anomaly, as per the definition from
antiquity, is α. The center of the epicycle, c is on the deferent. The deferent
radius RD makes an angle β with respect to the x axis. The earth, e, is at the
center of coordinates.
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Figure 3: (a): The heliocentric reference frame for distance of closest approach
bewtween earth and the planet. (b):Geocentric solution 1 where RD=rp and
RC = re. (c): Geocentric solution 2 where RD = re and RC = rp.
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Figure 4: (a): The heliocentric reference frame used to calculate the x axis
component of r, rx, ~r = ~rp − ~re. (b): The geocentric reference frame used to
calculate the x axis component of r, rx, ~r = ~RD + ~RC . Solution 1 is used,
RD = rp, RC = re
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