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PURPOSE: 
These notes are intended to assist students in instructional science laboratories, especially in 

physics, and to eliminate the need to repeat this material in each laboratory manual of a course 

sequence. 
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ESTIMATING ERRORS 
 

INTRODUCTION 

 

When the result of a scientific measurement is to be communicated, in a publication or even in 

a physics lab report, three pieces of information are essential:  

 

the VALUE for example   54.3 

 

its UNITS   " "  cm. 

 

its ESTIMATED UNCERTAINTY  

       examples    0.2 cm,   0.4% 

 

and a fourth piece is common: 

 

COMPARISON to values obtained by other methods or other people. 

 

This guide is focused on the third item above, the procedures for assigning an appropriate 

estimated uncertainty to a result.  The words "error" and "uncertainty" are used interchangeably 

except where specially noted.  The phrase "human error", as a euphemism for mistake, is, 

however, a forbidden term in lab reports. 
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Understanding the potential sources of errors in an experiment often dictates the design of the 

apparatus and the method or procedure.  Furthermore, in many cases simply identifying and 

understanding the source of an error will lead to ways of eliminating it.  

 

STATEMENT OF UNCERTAINTY ESTIMATES 

 

There are several accepted, and to some extent equivalent ways of expressing the uncertainty in 

a result.  The three most suitable to physics courses are: 

 

Significant Figures.  The way in which the value is stated should in itself be a crude indication 

of its precision.  Only the last stated figure should be in doubt, and the writer should believe 

that the number stated even in this last place is more likely to be correct than any other.   Thus 

a stated result of 2.54 cm (three significant figures) implies that 2.53 or 2.55 are less likely to 

be correct, and 2.70 would usually be out of the question (though see below).  It is permissible 

to carry one non-significant figure through calculations to avoid rounding errors, but this 

should be dropped in the final answer.  Normally the number of significant figures in a result 

cannot exceed the number of significant figures in any of the measurements that were 

combined to give the result.   

A pure number (integer) is assumed to have an indefinitely large number of significant 

figures in this context, that is 2 = 2.000000....   Constants such as pi (=3.1415927...) should be 

used with enough digits so that they do not limit the overall precision. 

 

Absolute error (plus and minus). A more precise and preferable statement of uncertainty 

(error) in the result is the direct one of attaching a  estimate to the value, for example 2.54  

 0.02 cm.  Usually the error estimate itself will have only one significant figure.  Note that 

the term "absolute" is simply a label to distinguish this mode of statement from others.  It does 

not imply that an uncertainty so stated is any more certain or correct.  Note that the value and 

the uncertainty carry the same units (cm. in this example). 

 

When there are sound statistical grounds for doing so, an error estimate can have more than 

one significant figure and can encroach upon "significant figure" rules, for example 2.54  

0.13cm.  However, a statement such as 2.54  0.79 cm is self-contradictory and should be 

rewritten as 2.5  0.8cm. 

  

Relative Error (percentage).   An equivalent statement of uncertainty can be made by dividing 

the estimated absolute error by the value and multiplying by 100% to express the estimated 

uncertainty as a percentage of the value,  

 

      e.g.   2.54cm  0.8%   ( = 2.54  .02 cm. )      i.e. %y =   100% x Δy/y  

  

In many experiments the relative error is constant throughout a series of measurements, though 

the absolute error may change. Expression of uncertainty in % is obviously more convenient in 

such cases.  
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OBTAINING THE UNCERTAINTY ESTIMATE 

 

For each of the steps of obtaining a result value there is a matching step for estimating its 

uncertainty: 

 

     Value:           Uncertainty: 

data readings  . . . . . . . . . . . . . . basic uncertainty estimate 

averaging data . . . . . . . . . . . . . . uncertainty of an average 

calculating result . . . . . . . . . . . . propagation of uncertainty 

       (combining different types of data) 

 

 

BASIC UNCERTAINTY ESTIMATES (on the data) 

 

Each piece of data must have its own uncertainty estimate  recorded as a   or  % value.  The 

method for deciding on these basic errors depends on the circumstances and method of taking 

data.  If the estimate is the same for a column of repeated readings, it may appear in the column 

heading.  Otherwise it should be appended to each reading. 

 

It is useful to consider three basic sources of error (uncertainty): 

a) Variation or uncertain definition of the thing being measured.  Examples: How many rain 

drops strike a square foot of ground per second during a storm?  What do you mean by the 

diameter of a not-quite-spherical ball?  How long is the top of a not exactly rectangular table 

with rounded edges? 

b) Uncertainty in the measurement itself.  Every instrument has limitations on its precision.  

Sometimes the very act of making a measurement affects the property being measured.  

Example, measuring the length of a rubber band.  

c) Applicability of the model/theory/equations to the real situation.    

    This source applies primarily to the calculation step, but is mentioned here for completeness. 

 

The errors from these three sources can usually be grouped into two categories: 

A) Systematic errors are those that are always in the same direction and tend to 

accumulate.  Examples:  calibration error of a voltmeter, readings from a meter stick 

missing a few millimeters at the beginning, timing with a stopwatch that runs slow or 

starts only on the next whole second after you push the button.   

 

Source (c) above refers to the subtle, but important type of systematic error: the use of 

an inappropriate equation for the calculations.  For example, one might have used a 

constant acceleration equation in a situation where the net force was not constant - e.g. 

a parachute jumper.  Less obvious would be the use of <r>
2
 instead of <r

2
> in 

calculating the moment of inertia of a thick ring.  [where < > is read as "the average 

value of" .] 
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As much as possible, systematic errors should be discovered, quantified, and 

eliminated or adjusted for in calculations.  Just taking more data will not reduce a 

systematic error, though it may help in the discovery of its source.  For a "theory 

mismatch" error the "correction" is usually to find the right theory to match the 

experimental conditions. 

 

B) Random errors are equally likely to be above or below the "truth".  Technically, 

"random" should be applied only in those situations in which the deviations from the 

mean value can be expected to follow the "normal distribution" or "bell curve".  

However, it is often used to mean any type of uncertainty that is not obviously 

"systematic".  In fact, methods developed for treating random errors are often applied 

to estimating the consequences of unquantifiable systematic errors.  Random errors can 

be reduced by taking more data (or by using a better measuring device). 

 

METHODS OF ESTIMATING RANDOM UNCERTAINTIES IN MEASUREMENTS  

 

Statistical Error Estimate:  When many measurements are made of a given quantity, random 

errors are best estimated by studying the variations among the measurements.  Note this method 

is worthless for estimating systematic errors.  

Mean Value.  The mean, or average value of a set of measurements of the same 

quantity is obtained by summing all values and dividing by N, the number of 

measurements summed.   

 

 

The difference between a single measured value 

and the mean value is called the "deviation" of 

the single measurement.  

 

δi = (value)i  (mean value)  = xi  <x> 

 

Standard Deviation or root mean squared deviation σ is the most accepted way of 

expressing the amount of scatter of data values from their average value.  It is defined 

and may be calculated by  

 

 

 

 

 

Except for using (N-1) on the bottom, instead of N,  σ  is seen to be simply the square 

root of the average (mean) squared deviations.   Thus it is often termed the "rms" 

deviation.  In practice, if σ is changed significantly by the use of N vs. (N-1), then N is 

not large enough to validate the use of statistics in the first place. 
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An alternative calculation, used by most calculators because it can be continually 

updated as the data is entered, instead of waiting for completion of all the data, is: 

 

σ
2
 = <x

2
 >  <x>

2       
 where < > is read as "average of" 

 

The square of the standard deviation is known as the "variance".  Physicists prefer to 

use the standard deviation σ because it carries the same units as the data.  

 

As a rule of thumb don't trust statistics if N is less than at least 10, and even for 

large N be wary of systematic errors, which can affect the mean while passing 

unnoticed through the deviations.  
 

    About 68%, roughly two-thirds of the measurements can be expected to be within one 

standard deviation σ of the mean value.  Over 99% of the data are predicted by statistics to be 

within 3 standard deviations of the average.  Thus when you report a mean value  σ (or mean 

 % σ) you are said to be stating it at a 68% confidence level.  Similarly, a statement of value  

3σ represents a 99% confidence level.  

  

It is common experimental practice to assume that isolated data outside  3σ represent 

mistakes rather than random fluctuations.  Such data points, if any, should be discarded and the 

remaining values re-averaged.  

  

 

Limitations on statistical treatment of errors.  A purely statistical estimate of uncertainty is 

invalid in three common cases:  

     a) Presence of uncompensated systematic errors  

     b) Number of readings N too small  

     c) Inadequate sensitivity of the measuring instrument  

  

The first two points have already been discussed.  For (c) one must recall that validity of the 

entire statistical treatment assumes that deviations both much smaller and larger than the 

standard deviation σ can be detected.  Therefore, whenever you observe that a calculated σ 

is not several times the smallest deviation detectable by the measuring instrument, you 

must find some other way to estimate the uncertainty.   

 

 

Non-statistical estimates: 

 

Manufacturer's statement:  Particularly common with electrical instruments, the 

instruction manual might say for example "voltage: 0.1% or one digit".  In the lab this 

type of information should be supplied by the manual or the instructor.  On analog 

meters the statement might be "voltage scales 2%, resistance 5%" and the user would 
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have to combine this (by methods discussed below) with the uncertainty associated 

with 'reading' the dial.  This is an example in which a systematic error is treated as a 

random one.  If the voltmeter actually reads, say, 1% too high, it probably does so 

consistently, but since you don't know whether it is reading too high or too low, you 

treat it as a random uncertainty.  Of course, if one has the resources to recalibrate the 

voltmeter, this systematic error can be reduced. 

 

 

Least count and common sense: When a statistical estimate is invalid, and in every 

case as a check, one must make an estimate of uncertainty based on experience, 

common sense, or other information. Every analog measuring device has a smallest, 

directly readable division - its least count.  On a typical lab meter stick the least count 

is 1mm on the metric side and 1/8 inch on the inch side.  When the measurement is 

made properly, (for example with the meter stick on edge so the markings are tightly 

against the object being measured) the uncertainty is usually some fraction of the least 

count.  One might read the meter stick to the nearest half millimeter, and the recorded 

data might be 38.65 0.05cm. Most of the time one should attempt to read analog 

devices to 1/10 of the least count, e.g. 38.67  0.01cm, but recognize this may be an 

optimistically small uncertainty estimate. [This "readability" uncertainty related to the 

least count is often called the "intrinsic uncertainty" of the measuring instrument.] If 

the circumstances are poorer, for example trying to measure the diameter of a 

basketball with a meter stick, an honest uncertainty estimate may be several times 

larger than the least count.  This is where the "common sense" comes in.  (On a digital 

meter the least count and the reading uncertainty are automatically the last digit and 

cannot be subdivided.) 

 

 

The “counting statistics” of radioactivity:  

A single radioactive decay is an extremely fast, but very unlikely event.  Any particular nucleus 

may decay now, or later, or much later; and there is nothing you can do to change when it 

happens.  All you can do is observe a large number of nuclei, “count” the number of events, 

and treat the results statistically.  Your sample may have bursts of decays, and periods of fewer 

decays, or it may have periods of more or less steady decay rate.  The larger the sample the 

steadier the rate will become in terms of % changes.  The question then becomes, “How well 

does my observed number of “counts” represent the “true” average of the sample‟s decay rate? 

 

The answer is simply that the standard deviation  of a number of counts N is the square root 

of N.  So, for example, if you have collected 100 counts in a then  is 10.  You could say that 

the “true” average decay rate has a 68% chance of being between 90 and 110 for the time 

interval measured.   How can you be more accurate?  Collect more counts.  If you collected 

10,000 counts (by observing longer or using a larger sample) then  becomes 100 instead of 

10.  At first glance this seems larger, but compared to N of 10,000 the  is only 1%, where for 

N=100,  was 10%.   



 

 9 

 

A second complication in radioactivity measurements in the real world is “background.”  Even 

in the absence of the radioactive source your detectors register some “counts” from cosmic 

rays, natural or artificial radioactivity in the surroundings, and “noise” in the detectors 

themselves.  These, too, are random in behavior, and your data samples the average.  Therefore 

the contribution of the source must always be calculated by subtracting the background rate – 

observed without the source, but everything else the same. 

 

Calculation of the resulting uncertainty from combining ‟s of total and background counts 

will be discussed later. 

 

 

VALUES CARRIED FORWARD 

 

At this point you have measurements of a few basic quantities, for example the length and 

width of a table.  All items show a basic least count uncertainty estimate, and all show more 

than one reading (to reduce the chance of a simple mistake).  Some may have satisfied the 

conditions for valid statistical treatment and thus show also an average value and a standard 

deviation describing the spread of data around that average value.  

 

Standard Deviation of the Mean.   Obviously the average of several readings can be expected 

to be "better" i.e. nearer the truth than a single reading.  The "standard deviation of the mean" 

quantifies this idea.   

 

The standard deviation σ, calculated above, measures the scatter of data values from their 

mean.   

 

A quantity of greater interest, which should be used in the "propagation of uncertainty" for 

subsequent calculations, is the standard deviation of the mean, S.  It is calculated from  

S = σ / N (where N is the number of readings of that piece of data) and in the absence of 

systematic errors measures the likelihood of deviation between the mean of your values and 

the "true" value. That is, the mean (average) value has a 68% chance of being within  S  

of the "truth",  just as an individual data reading has a 68% chance of being within   of the 

average of the set of readings. 

 

Uncertainty of the uncertainty:  Because your data set is not infinite, it is also subject to what is 

termed a "sampling error."  That is, there is an uncertainty about the value of the standard 

deviation.   

 

For ideal "random" data this can be expressed as: 

   

Thus for ten readings σ itself is statistically in doubt by about 25%, and the doubt increases 

rapidly for smaller N. This is the reason for suggesting that below 10 readings a statistical 






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
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treatment is not worth the trouble (especially since most data cannot be expected to follow a 

"normal distribution"). 

 

Uncertainty in the average of a few readings:  It is common to take from half to a quarter of 

the difference between the extreme values of a few readings as a measure of the accuracy of 

their mean.  Here it is particularly important to be on the lookout for mistakes or anomalous 

readings (such as a lump of gum on the table where you measured it). 

 

Even if all readings are identical, their uncertainty is not zero.  One must still attach a 

reasonable combination of the "readability" error, based on least count and common sense, and 

the calibration uncertainty of the measuring device.  The value of this reasonable combination, 

which we shall term the "intrinsic error of the measurement", is usually taken as simply the 

largest of its components: fraction of least count, common sense, or calibration uncertainty.   

In calculations of the result you use the mean values of each quantity, and in 

calculating its estimated uncertainty you "propagate" only the larger of the 

"intrinsic" uncertainty and the computed statistical error S, not both.  Combining 

these two, while theoretically appropriate, is a subtlety not justified by most sets of data. 

 

 

UNCERTAINTY ESTIMATE FOR THE RESULT 

 

Propagation of errors is the name of the process by which the uncertainties of the various data 

values are combined to give the uncertainty in the result.  Before this step, all discoverable 

systematic errors should have been corrected. Remaining unknown systematic errors, for 

example voltmeter accuracy specifications, have been combined with the appropriate estimates 

of random error to establish the uncertainty of each mean value carried forward.  

 

Now is the time to combine the various data to calculate uncertainty of the final result. 

 

Rules for combining all data error estimates to obtain the estimated uncertainty of the 

final result are below.  They are based on "first order" error analysis, which is easily 

understood by examining the total derivative of the expression.  (see page 20) 
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 I.  When independent data are multiplied or divided, the relative uncertainty   (fractional  

      or %)  in the result is the square root of the sum of the squares of  the relative 

      uncertainties of the data.   

 

For example, suppose L and W are the length and width of a table, with measured values L  

SL and W  SW.   Suppose you want the Area of the table, A = LW. 

 

Define, for shorthand, %W = 100%  x  SW / W,    and similarly for L. 

 

Then the "first cut" propagation is %A = %L + %W 

and the "better" calculation is     

 

 

Corollary.  In multiplication or division the number of significant figures in the result cannot 

exceed the smallest number of significant figures in any factor.  (Integers have, of course, as 

large a number of significant 0's as needed.)  

 

Suppose instead that you want the ratio of the table's length to its width,  

R = L/W.  [Note that first order analysis does not distinguish between L/W and L x (1/W), 

i.e.  %W = %(1/W).  This is because by the above rule,  %(1/W) = %(1) + %W, and the 

integer "1" has 0 uncertainty].   

 

Thus:  first cut  %R = %L + %W   

    and the "better" value is    

 

 

just like the uncertainty propagation for the area A. 

 

 

II.    When independent data are added or subtracted, the absolute uncertainty of the 

result is the square root of the sum of the squares of the absolute uncertainties of the 

data.  For example, suppose again that L and W are the length and width of a table, with 

measured values L  SL and W  SW but this time you want the perimeter,  P = 2L + 2W. 

  

"First cut" error estimate  SP = S2L + S2W    

   {see IV below for proof that S2L = 2 SL} 

 

      "Better calculation"     

        

 Corollary.  In addition or subtraction the result need be carried out only through the first 

column that contains a doubtful figure.  

 

 

22
W%L%A% 

22
W%L%R% 

222
2

2
2 22 )S()S(SSS WLWLP 
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A different situation for the application of the same “propagation” rules is the calculation of 

the rate of radioactive decay of a source, from data of background and source+background 

count rates.  If NT is the total count rate, and NB is the background, then clearly NSOURCE is 

NT – NB.  As discussed earlier, the uncertainty in NT is NT etc.  The two data values are 

independent, and therefore their uncertainties combine as the square root of the sums of the 

squares.  The result is that S = {NT + NB}.  Thus if your data was 700 with the source 

present, and 300 with the source absent, the contribution of the source would be 400  32, 

i.e. the difference in the values  the square root of the sum of the counted values. 

 

III.  When dependent values are multiplied or divided their % uncertainties are added or 

subtracted, respectively, without the squares and square root.   

 

Dependence most often occurs in calculations involving raising some data to a power. For 

example, if C = A
2
,  i.e. AxA,  then %C = 2 %A. 

 

This is easily remembered by use of the derivative.   

 

          if C = A
2
    then     ln C = 2 lnA  and  δC/C = 2 δA/A 

 

Noting δA is SA, and multiplying everything by 100%, 

 

          %C = 2 %A 

 

Note the general rule that if a calculation involves raising a measurement to a power,  the 

% uncertainty in the result is the measurement's % 

uncertainty multiplied by the power.  

 

         e.g.  if  V = (4 π / 3) r
3   

 then %V = 3 % r ,  

     since 4, , and 3 contribute no uncertainty. 

 

A simple example of dependent errors in division would be the measurement of a 

tabletop, and the calculation of the ratio of length to width.       Suppose the huge 

systematic error were made of measuring the length and width in inches, but recording it 

in centimeters.  The length to width ratio would still be correct because the equal percent 

errors in both numbers would subtract to zero (leaving only the independent random errors 

to add as the square root of sums of squares). 

 

 

IV. When dependent values are added or subtracted their absolute uncertainties add or 

subtract, respectively, again without benefit of squares and square roots. 

The most common occurrence of such automatically dependent values is the multiplying 

of a data value by a constant. 
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For example if D = 2X,   i.e. X + X,  then SD = 2 SX.   

 

Again this can be justified from the derivative δD = 2 δX + X δ2,  

but δ2 = 0 since 2 is an integer, and δX is what we mean by SX.   Therefore in the 

perimeter example in section II above, one would evaluate SP by first calculating S2L = 2 

SL , and similarly for W. 

 
Note the general rule that when a calculation requires multiplying a measurement by a 
number, the absolute uncertainty of the result is the absolute uncertainty of the 
measurement multiplied by the same number, but its relative or %  error is unchanged.   

 
For example, if one side of a square has been measured and the "result" calculated is the 
perimeter, then since P = 4 L,  ΔP = 4 ΔL,  

and thus P = 4L  4 ΔL.   
 

However, if all four sides have been measured independently with equal instruments and 
care,  

 
 
 

 
This is half the uncertainty in the result, but it requires taking 4 times as much data. 

 
In these examples it is obvious that one term of X, in 2X,  or one factor  
of A, in A

2
, is  dependent on the other.  Unfortunately, experimental interdependence of 

measurements is tricky and, if suspected, should be discussed with the instructor.  Generally 
you may assume independence of data except for cases similar to the examples above, most 
of which arise in calculations rather than in measurements.  
 

 
  

PROPAGATION OF UNCERTAINTY IN MORE COMPLICATED CALCULATIONS 
 
Many calculations can be broken down into a series of additions or multiplications.  For 
example the density of a cylinder with an axial hole in it is: 
  
       ρ = M / [ π L (R1

2
 - R2

2
) ].   

 
Therefore:  

        %ρ = [%M
2
 + %L

2
 + %(R1

2
 - R2

2
)
2
],  

 
but  %( R1

2
 - R2

2
 ) must come from Δ(R1

2
 - R2

2
 ) / (R1

2
 - R2

2
),  

and  Δ(R1
2
 - R2

2
) comes from  

 
 

LLP  24 L  L   L  L 22
4

2
3

2
2

2
1

2
2

2
1 RR 
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and  ΔR1
2  

is from Δ = %R1
2
 x R1

2 
/100,    

and   %R1
2
 = 2 %R1 ,  etc.   

 
This is all very tiresome, but straightforward. 
 
There are however some calculations, for example those involving trig functions or logs, that 
cannot be treated by the simple rules presented above.  One can develop a treatment for each 
case modeled on the total differential, but most students choose instead to simply calculate 
"worst case" uncertainties by recalculating the result substituting, into the calculation, values 
increased or decreased by their estimated uncertainties in a way to maximize their 

contributions  ( for example using +S  for numerator values and S for measurements in the 
denominator).  The estimated uncertainty in the result is then some reasonable fraction of this 
"worst case." 

 
COMPARISON OF VALUES. 

 
If one quantity is experimentally determined by two different methods, it is meaningful to 
compare the two results quantitatively.  This is most often done by computing a percent 
difference.  Thus if V1 and V2 are the values of V measured by methods 1 and 2, then  
 
 
    % Difference = 100% x Difference / Average =   
 
 
If a quantity has a standard value (a value accepted by the scientific community), it is 
meaningful to compare it to your result.  Again the most common quantitative comparison is 
the % difference, but when compared to an accepted value the resulting number is dignified by 
the label “% Error” rather than “% difference.”     
 
      Thus     %Error = |Vyours -Vstd| x 100%  
     Vstd 

 

In either above situation if the two values are drastically different, e.g. one twice or ten times 

the other, the % form of comparison is meaningless and you should review your calculations 

and units for a mistake.  If no mistake can be found, you must settle for admitting that one 

value is "so many times" the other.  But DO NOT use terms such as "900% error" or "40% 

correct." 

 

What is a "good" or "acceptable" difference?   It depends on the experiment.  A useful way of 

looking at this is to consider the difference in the context of the uncertainties of the values 

being compared.   For the purpose of the instructional labs we will consider the difference to be 

 "adequately small," the values to "correspond,"  and  the  results  to  be  "in agreement" 

according to whether their difference is less than the combined uncertainties of the values,  
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    i.e.  whether  (A - B)
2
 < (ΔA)

2
 + (ΔB)

2
.   

 

Of course it is not fair to intentionally inflate ΔA and ΔB to achieve this condition.  

 

 

ANGLES AND TEMPERATURES present special problems in error analysis, not 

because both are in degrees, but because in many situations the "zero" is arbitrary and, 

therefore a % error is meaningless.    

 

An  “absolute error” in temperature of   2   is meaningful,  but  to  state  the situation of  

  2  at 20 F as a 10% uncertainty, is wrong because 0 F is arbitrary.   However,  2  

uncertainty on a temperature change of 50  would be a meaningful   4%.   A single 

measurement's % uncertainty becomes meaningful only when the context is such that an 

"absolute" temperature scale, such as Kelvin, is appropriate.  For example a  2 C uncertainty 

would be meaningfully a   0.7% uncertainty at room temperature of about 300 K if one were 

estimating the average speed of air molecules. 

 

Similarly, an “absolute” angle uncertainty is meaningful, but % uncertainties make sense only 

when compared to a difference between two angles, or when there is a clearly understood 

“zero” - such a comparing to a full cycle, 360, of the motion. 
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ESTIMATING ERRORS IN GRAPHICALLY OBTAINED VALUES.   
 

Graphical uncertainty estimates:    

 

Elaborate formulae exist for calculating slopes, intercepts, slope uncertainties, and intercept 

uncertainties directly from data values.  Some of these appear below.  For lower division 

physics labs we will, however, generally use an analog approach - PLOT THE GRAPH.  Draw 

what you consider the "best" straight line fit (linear regression) to obtain slopes and intercepts.  

(This assumes, of course, that the graph axes have been chosen to make the expected relation 

linear.)  Then draw what you see as "alternative, acceptable" fits to estimate reasonable plus 

and minus limits in your slope and intercept values - referred to in the lab manual as 

"alternative slope method". 

 

To the right is an example 

of drawing "alternative 

fits" to estimate the uncer-

tainty in slopes and 

intercepts.   

 

(The spreadsheet plot has 

'cheated' by using the 

numerically calculated 

values for σ-slope and 

forcing the alternative fit 

lines to go though the 

average-x, average-y 

position.  The resulting 

intercept variation is very 

close to the numerical   

 σ-intercept.)  It is 

interesting to note that all 

lines, especially the 

higher-slope alternative fit, 

have a smaller slope than 

might have been drawn "by eye."  As bad as it looks, the coefficient of fit (= correlation 

coefficient) is 0.946 for this graph! 

 
It is particularly useful for estimating the "alternative fits" to have plotted  
error bars on your points.  In the spirit of standard deviation you can then miss up to a third of 
the error bars with your "acceptable" extreme lines.   [This was not done for the example 
above.]  If even your "best" line cannot touch two thirds of your error bars, you have a 
problem, [as would be the case above if the plotted "point" size represented the estimated 
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uncertainty].  You should then restudy the data (for mistakes or systematic errors), the error 
estimation procedure (for size of error bars) and the theory (for the possibility that the assumed 
mathematical dependence is in error).  
 

If your pocket calculator does linear regressions, you are encouraged to use it as a check but 

not as a substitute for your graphical analysis.  Calculators have no "sense" about excluding 

bad data points resulting from data or data entry mistakes, and are therefore prone to producing 

eight to ten digits of utter nonsense.  

 

 

Numerical estimates of uncertainty of graph slopes and intercepts 

 

In the GRAPHS section equations are listed for calculating the intercept and slope of a linear 

graph.  Repeated here, these equations [for the   y = a + bx   line] and   n   data pairs are: 

 

a =  [y][xx] - [x][xy]     b =  n[xy] - [x][y]  

         n[xx] - [x][x]                n[xx] - [x][x] 

 

where [y] = Σ yi of all data,   [xx] = Σ xi
2
 of all data,  [xy] = Σxiyi  etc. 

and one is assuming that the x values are accurate and the scatter is in the y values. 

 

In order to estimate the accuracy of the coefficients, one must return to the data-calculation 

table to calculate the "residuals", i.e. how far each data point is from the best fit straight line. 

 

for di = a + bxi - yi      and α
2
 = [dd]/(N-2)     for N readings in the data set. 

 

The estimated error in the coefficients is 

 

σ
2
a =    [xx] α

2
                  σ

2
b =      N α

2
         . 

       
          

     N[xx] - [x]
2
               N[xx] - [x]

2 

 

and if one is a glutton for punishment and wants the correlation coefficient, one must again 

return to the table to calculate columns of Xi = xi - xAV   and Yi = yi - yAV . 

 

Then:       r =       [XY]_____       

       ([XX][YY]) 

 

 

 

 

 

Below is a Sample data/calculation Table for numerical calculations of slopes, intercepts and 

their uncertainties 
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intercept a = 4.405 ;   σa =    0.332  ;     α

2
 =   0.320    

slope b =   2.305    ;   σb =    0.062  ;    coefficient of fit = 0.997 
 
So the equation of the best fit line is: 

 y = (4.405  0.332) + (2.305  0.062)x 
 
and the alternative fit lines plotted are: 
y = (4.405 - 0.332) + (2.305 + 0.062)x,  
and 
y = (4.405 + 0.332) + (2.305 - 0.062)x 
 
Note that these estimated uncertainties are  
based entirely on the scatter of  y  values  
with the  x  values assumed accurate.   
 
Formulae exist for incorporating  
uncertainties in the points themselves  
by weighting them according to their  
reliability, but these are beyond the scope  
of these notes. 
 
Reference:  J. Topping  "Errors of 
Observation and Their Treatment",  
Institute for Physics, London  1956 

 
x  

 
y  

 
theo 

 
 xy 

 
xx 

 
X  

 
Y  
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9  
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4  
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-0.5 
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 0.79   

 
2.50 

 
5 

 
16.6 
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 0.5 

 
 1.82 

 
-0.667 
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 0.25  
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3.31 

 
6 

 
17.9 

 
18.24 

 
107.4 
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 1.5 

 
 3.12 

 
 0.338 

 
0.114  
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9.73 

 
7 

 
20.1 

 
20.54 

 
140.7 
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 2.5 
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28.30 
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22.85 
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-0.851 
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24.9 

 
25.15 

 
224.1 

 
81 

 
 4.5 

 
10.12 

 
 0.255 

 
0.065  

 
20.25  

 
45.54   

 
102.41 

 
45 
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147.8 

 
855.3 

 
285  

 
 0  

 
-0.00 

 
 0.000 
  

 
2.559 
   

 
82.500 
  

 
190.20  

 
441.06 
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CONCLUSION OF ERRORS SECTION.   
 
When you complete an error analysis and arrive at a predicted uncertainty for a result, pause 
and ask yourself,  "IS THIS REASONABLE?"   Check particularly that any statistical 
treatment of uncertainty has not given an answer at odds with either the intrinsic uncertainty or 
the observed scatter of data.   Consider also possible systematic errors.  Graphs are particularly 
powerful for spotting trends and interdependence of experimental variables.  
  
Additional questions, to be answered in the discussion section of your lab reports, are:  
 
1) (always) "Does the stated uncertainty reflect inaccurate measurement  
of a constant quantity, or accurate measurement of a varying or variable  
quantity?"   
 
2) (usually) "Has the making of the measurement affected the experiment?"  [Did your 
micrometer squash the sample?  Did your voltmeter "load" the  
circuit? ...] 
 
3) (sometimes) "Is the precision limited by resetability, or by readability?" [for example by 
deciding when the cross-hair is on target, or by the subsequent reading of the cross-hair's 
position on the scale of the setting screws] 
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DERIVATION OF FIRST ORDER ERROR ANALYSIS 
 

A typical calculus text shows that the “total differential” of a function  

of several variables, say w(x,y,z,…) is: 

 

 

 

In experimental measurement terms this translates as: “If  w is the calculated result from data 

measurements x, y, z, …, then the change (uncertainty) in this result due to a change 

(uncertainty) in any of the data contributing to the result can be calculated from the data change 

times the partial derivative of the combining „result‟ equation with respect to that data 

„variable‟.” 

 

For example, if  w  is the perimeter of a rectangle, w = 2x + 2y, where x and y are the measured 

length and width. 

 

 thus dw = 2 dx + 2 dy , and if there is an error or uncertainty  

 in  x  of dx, then the resulting error or uncertainty in w is 2 dx. 

 If dx is known to be positive, then so is dw; and if dx is negative  

 (i.e. too small) when w is reduced by twice the dx error.  And if  

 dx is a  uncertainty, then dw is  2dx.  Same for dy. 

 

But suppose both dx and dy are non-zero.  Here‟s where additional thought is needed.  If dx 

and dy are “systematic errors,”  as defined on page 5, then they simply add or subtract 

according to their signs and the sign of their corresponding partial derivatives.   

 

But suppose both are “random” and “independent,” equally likely to be – or +.    

Think of “independence” graphically as “at right angles.”   

 

The most probable combination of “independent” quantities is to take the square root of the 

sum of squares, analogous to the hypotenuse in two dimension.  But of course this process is 

not limited mathematically to two, or even three dimensions.  So for random, independent 

errors the total differential becomes a mnemonic for the process with the simple summation of 

partial derivative terms replaced by the square root of the sum of their squares.  Note that it is 

the SUM of the squares of the terms.  No uncertainty can ever reduce the uncertainty of the 

result, even though a known increase, or decrease, in the corresponding piece of data may 

decrease the result. 

 
For a second example, suppose w represents the density (mass/volume) of an object.    w = 
m/xyz for a rectangular brick of dimensions xyz. 
 
then    
 

...dz
z

w
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y

w
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w
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and if we divide both sides by w = m/xyz, we get 
 
 
      (20)   

 

which we could have reached more directly by taking natural logs of both sides of the equation 

before doing the partial derivatives, i.e. 

 

  ln w = ln m – ln x – ln y – lnz 

 

Again, if dx or dy or dz is known to be positive, then it reduces w, just as a positive dm 

increases w.   But if all are independent uncertainties, then the fairest combination is the square 

root of the sum of the squares of the terms. 

 

Putting equation (20) in words, we state that for a result obtained by multiplying or dividing 

the data, the “relative error” in w is the square root of the sum of the squares of the relative 

uncertainties of the independent contributing data. 

 

And if we multiply both sides of  eq#20 by 100%, the % error in w is equal to the square root 

of the sum of squares of the % errors in its components. 
 
Another example:   Suppose the object whose density is being measured is a sphere. 

 w = mass/volume = m/(4R
3
/3) 

 
then   
 

 

because 4/3 is a constant with no partial derivative; and the natural log of  R
3
 is 3 ln R.  Any 

mistake or uncertainty in measuring R is tripled.  Note that it wouldn‟t help to measure the 

diameter D and use volume = D
3
/6 .  The tripled contribution to the error or uncertainty in 

density is the same.   

 

And what about the minus sign?   If R is too big, then w is undervalued;  

but if dR is a  uncertainty, then it increases w‟s uncertainty, as always. 

 

And one last example:  The period P, the length of time for one full swing, of a simple 

pendulum is P = (L/g) where L is the pendulum length and g is gravity.  

 

Since  ln(period) = ½ ln L – ½ ln g, the relative error or uncertainty in period dP/P is only 

half that of the length measurement dL/L. 

 

 

z

dz

y

dy

x

dx

m

dm

w
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R
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NOTE THAT SINCE ALL THE RULES OF PROPAGATION PRESENTED ABOVE 

ARE DERIVED FROM THE CALCULUS DIFFERENTIAL, THEY ARE VALID ONLY 

WHEN THE CHANGE OR UNCERTAINTY IS SMALL COMPARED TO THE DATA 

VALUE. 

 

WHEN A LARGE CHANGE IN DATA IS MADE, IT MUST BE ENTERED FRESH 

INTO THE APPROPRIATE EQUATION FOR THE RESULT. 

 

OTHER USES OF “ERROR PROPAGATION THINKING” 
 

Clocking your speed:   
You are driving down the highway and time yourself against the mileposts.  

If your speed is 60 mph it takes you (3600 sec/hour)/(60 miles/hour)= 60 sec/mile.  But 

suppose your time is only 58 seconds. 

 

You could calculate your speed as (3600 sec/hour)/(58 sec/mile)=62.07mph, but this is not 

easy to do in your head.  Instead, remember that v = d/t and therefore v/v = d/d - t/t.  

Assuming the mileposts are accurate, i.e. d=0, then v/v= -t/t;  v = -v (t/t) = - 60 (-2/60) = 

+2    i.e. v = 62 mph. 

 

QUESTION:  Suppose your mile time was 40 seconds instead of 60 sec., what is your speed?  

NO, it‟s not 80mph.  This is too far away to apply derivative-based error analysis.  Your speed 

is 3600/40 = 90mph, so watch for airplane spotters and radar checkpoints.  (But 56 sec → 64 

mph by error analysis; closer to the true 64.3 than you can read on your speedometer.  And, of 

course, each second timing uncertainty becomes 1 mph speed uncertainty – if you are driving 

60mph.) 

 

Thermal expansion and the pendulum clock: 

Almost all materials get bigger as they get warmer.    This is covered quantitatively in the topic 

of thermal expansion, with L/L = α T  (where T is temperature change, L is length, and α is 

the “coefficient of thermal expansion” with units of reciprocal temperature.)  For real materials 

α is so small that answers stay within the realm of error analysis calculation for any change that 

doesn‟t destroy the sample (though changes in α with temperature can cause a problem for 

large temperature changes). 

 

Meanwhile the period of a pendulum is P = (L/g), where g is gravity.   

 

QUESTION: Suppose a clock with a steel pendulum shaft cools by 6 degrees, how much time 

does it gain (or lose) per day? 
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ANSWER:  P/P = ½ L/L – ½ g/g = ½ α T.  (Remember those halves come from the square 

root, and g isn‟t changing)  The value of α for steel is  13 x 10
-6

 per degree C.  P for a day is 60 

sec/min x 60 min/hour x 24 hours/day = 86400 sec/day.  Therefore P = 86400 sec/day x 13 x 

10
-6

 per deg x (- 6 )degrees = - 6.7 sec.   The period is shorter; the pendulum swings more 

often; the clock “gains” 6.7 seconds per day by being cooler by 6 deg.  (Note that it doesn‟t 

matter whether the pendulum swings once per second, or is so long that it swings only once per 

day, the % change and therefore the change per day is the same.) 
 
 
 

Pendulum clocks on mountains:   
Let‟s carry our pendulum clock 1000m in altitude up a mountain.  Outside a spherical mass  
g = GM/R

2
 where G is {Newton‟s} universal gravitational constant, M is the mass (here, of the 

earth), and R is the radius from the center (6400km). Thus g/g = -2 R/R = -2 x 
1000m/6400km = -3.125 x 10

-4
 (where the “2” came from the squared R).  Therefore, 

remembering that P/P = - ½ g/g we find that P = 84600 x ½ x 3.125 x 10
-4

= 13.2 seconds 

per day.  P is positive, the period is longer, the pendulum swings fewer times per day, and the 
clock “loses” 13.2 seconds per day.  
 
QUESTION:  You know that it generally gets cooler as you go to higher altitudes.  A typical 

value is 6C per 1000m up.  So what coefficient of expansion is needed for our pendulum shaft 
material so that the cooling cancels the decrease in gravity?  (Be glad your digital wristwatch 
doesn‟t care about g, and has a much smaller temperature dependence than a typical pendulum 
clock.) 
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SOME QUESTIONS FOR SELF-TESTING  
  

1.  If a value and uncertainty were stated as 2.48  .02 cm, would this error statement be called 
"absolute" or "relative"?  
  
2. State the value and uncertainty of question #1 using a percent uncertainty statement. 
  
3. What is the mean, standard deviation of the data, and standard deviation of the mean for the  
following: 2.50,  2.45,  2.38,  2.42,  2.7l,  2.65,  2.58,  2.4l,  3.68,  2.55,  2.68, 2.5l,  2.49,  2.45.  
  
4. You want the area of the lab table top and have recorded the following data for width:    
    42.35 cm, 42.30 cm, 42.33 cm.  What do you do next?  
 
5. Using a vernier caliper you have the following data for length of a brass cylinder:   
    4.220,  4.220,  4.220,  4.220 cm     
     a)  What is the standard deviation?  
     b)  What uncertainty should you attach to the mean?  
  
6. Answers from two ways of doing the experiment are 42.l cm/sec and 265 cm/sec.   
      What is the percent difference?  
 

7. The diameter of a right circular cylinder is 2.78  .04 cm;  

    its length is 4.2  .05cm.  What is its volume?  
 
8.  Your Geiger counter registers 600 counts in 5 minutes with the sample present, and 400 
counts in 5 minutes with the sample removed (so-called “background”).    
 a) How many counts per minute are coming from the sample?  
 b) How can I reduce the uncertainty of my answer? 
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ANSWERS TO THE SELF TEST  

  

1. "Absolute".  But remember that this name is a label to distinguish it from 

     "relative", not a guarantee of infallibility.  

 

2.  2.48cm  0.8%.  Note that only one significant figure is carried in the uncertainty.  If it were 

a small number, two places might be justified.  It depends on how well the uncertainty is 

known.  

 

3.  Mean 2.522;   

     σ = 0.l06 or 0.l02 depending on whether N-1 or N is used.  S = .03   

The 3.68 should be discarded as clearly a mistake or because it is more than 3σ from the 

mean.  Thus the value and uncertainty as an answer, or to be carried into other calculations, 

would be 2.52  .03.   However, note that while this is fine as a numerical exercise, it would 

be very unusual to have the spread of data so large compared to the claimed precision of the 

measuring instrument -- rather like measuring a marshmallow with a micrometer.   

 

4.  Start again!  This time read the cm side of the stick instead of the inches.  And don't try to 

get by with changing inches to cm by multiplying by 2.54, because the ".3"  recorded was 

probably eighths, not tenths!  ALWAYS LOOK AT YOUR DATA TO SEE WHETHER 

IT IS REASONABLE.  

  

5.  Standard deviation is meaningless here.  You have decided that the vernier line that "lined 

up" with a main scale line was the one giving a reading of 4.22.   If you used the simple 

10:9 vernier [where the vernier has 10 marks in the length of nine main-scale marks], then 

you decided that the lineup was at 4.22, not 4.2l or 4.23, and it must have looked 

consistently to you to be greater than 4.2l and less than 4.23.  Therefore, attach  .005cm 

(half the effective 'least count').   If you had one of the newer 20:38 vernier calipers, this 

data represents a decision that the reading was greater than 4.215 and less than 4.225, 

therefore attach .005cm (go for the 'least count', not half, because the eye's resolution is 

nominally .01cm.  If you had the latest calipers with a  50:49 vernier, the decision would be 

among 4.218, 4.220, and 4.222; but the uncertainty would still be  .005cm (eye-and-

parallax-limited, unless you use a magnifying glass to justify  0.002).  Note that in any 

case you can't take four hundred more 4.22 readings and decrease the uncertainty by a 

factor of 10, as you could for a "normal distribution" set of data, because it is 

fundamentally eye-resolution limited, not instrument limited.  To gain precision one must 

enlarge the scale optically (magnifying glass), mechanically (micrometer), or electronically. 

 

6. Percent difference is meaningless for answers so far apart.  Look for a mistake.  Here, for 

example, the ratio of the numbers is close to 2π.  If this were a circular motion experiment 

this could pinpoint a likely calculation mistake.  
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7.  25.5 cm
3
  3% or 25.5  0.8 cm

3
.    

 

8.   a) 40  6 cpm     b) count longer 

 

 a) In 5 minutes the source contributed (600  600) – (400  400) 

        = 200  1000  =  200  32.  To express this in counts per minute  

  both  the value and the uncertainty are divided by the 5. 

 

 b) Assuming you are studying a constant (long half-life) source,  

    collecting four times as much data, i.e. 20minute counts each, would  

  reduce the uncertainty by half.   Fourteen hours each of data with  

  and without source could reduce the statistical uncertainty to 0.6. 
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X-Y GRAPHS & CHARTS are used for two distinct purposes in scientific reports: 

     a) display or presentation of data and results 

     b) as an aid to analyzing data and finding mathematical relations among 

         the variables of an experiment. 

 

In both types of use a graph displays as a two-dimensional, or sometimes pseudo three-

dimensional picture what happens to one measurable quantity (variable) or predicted result in 

an experiment as another variable is changed.      Graphs are particularly useful because they 

build on the human mind‟s innate ability to visually recognize patterns. 

 

The majority of the following discussion is directed toward purpose (b) above, that of graphing 

as a tool for data analysis and for converting a perceived pattern into a numerical relationship. 

 

PLOTTING     
The most common type of graph in physics reports is the "XY" plot. By convention, if one 

quantity can be said to depend on the other, the dependent variable is plotted on the vertical 

(ordinate) “y” axis, and the 

independent variable is along 

the horizontal (abscissa) “x” 

axis. That is,  "what you do" 

along „x‟ and "what happens" 

along „y‟.  Each point  on a 

graph represents the 

simultaneous values of the two 

coordinates (x and y) for one 

piece of data, where the "  " 

shows the actual value of the 

(x, y) pair.  Especially for 

hand-plotted graphs where the 

number of data points is 

relatively small, it is common 

to draw a circle around the data 

points to make them easier for 

the reader to spot the dot.  The graph as a whole then displays a set of data for which a general 

relation is sought.   [The data graphed here is for a less common situation of accelerating a 

mass on an air track  -  using a string mounted higher than in line with the track.] 

 

If several sets of data are to be displayed on the same graph, other symbols commonly used are: 

x  or  + , or a dot surrounded with a   or Q.   



 

 28 

It is sometimes desirable to indicate directly on the graph the uncertainty associated with each 

data point.  This is done with "error bars", replacing the "" or "x" or "+" representing the 

value pair with a  I, I, or I  symbol whose height shows the estimated  "y" uncertainty of the 

point plotted, as in the graph at the right. 

 

The scale of the graph is chosen to 

accomplish the following: 

 

1.  Ease of plotting and re-reading.  

Division of a major unit into 2, 5, or 

10 parts is good; 4 is less desirable; 

other fractions are very awkward. 

{Note that lines are labeled - not 

spaces, as in a typical bar graph.} 

 

2.  Accuracy.  To display the full 

accuracy of the data the last 

significant figure should be 

represented by at least 1/5 of the 

smallest division on the paper.   

 

3.  Size.  Data points should occupy as much as possible of the range of both coordinates.  

The intersection of the axes need not be at (0,0) if there is no data point there (unless 

graphical evaluation of the intercepts is required).   Similarly, one should plan ahead if a 

negative intercept is expected. 

 

All graphs should be titled and should have their axes clearly labeled - 

including units.   [Try to make the title more informative than simple reiteration of the 

axes.]  

 

For instructional physics lab reports data must be in ink,   

but plotting in pencil is recommended.   

 

For most physics experiments a smooth curve is drawn among the points as a first step toward 

finding a mathematical relation between the dependent and independent variable: viz.  y = f(x). 

The smooth curve need not pass through all (or any) points, but should be drawn to minimize 

the sum of the distances of all points from the curve.  If "error bars" are used on the points, 

the curve should pass through most of them. 

 

The smooth curve should have a shape consistent with the theoretical relation between the 

quantities.   
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It is easy to recognize and draw a straight line.  It is not so easy to recognize, just by looking at 

it, a “good” parabola or trigonometric function.  Therefore, whenever possible, x and y 

should be defined in such a way that this relation will be represented by a straight line.  

Then, instead of a smooth curve, a 

"best straight line" should be drawn 

with a straight-edge. 

 

{The example at the right is the same 

data as that in the first graph of page 27, 

but plotted in a way that “should be” a 

straight line.}   Theoretically, "best line" 

means positioning the line so as to 

minimize the sum of the squares of the 

"y" distances of the data points from the 

straight line.  It can be shown 

mathematically that the best straight line 

must pass through the point (<x>, <y>), 

where <x> is the average value of all x 

values of all data points, etc.  Therefore, a common aid to drawing a best fit line by eye is to 

locate the point <x>,<y> on the graph and to treat it as a "pivot point" for the ruler while 

choosing the best slope. 

 

In instructional physics labs the position of the best line is usually pretty obvious.  If the point 

scatter is so large that the position is seriously in doubt, a data or analysis error probably has 

been made. 

 

ANALYZING 

The goal of graphical analysis is to transform the qualitative, visual relation between the 

variables into a precise, mathematical one.  This is where the value of choosing axes to 

make the relationship “linear”, i.e. a straight line, becomes apparent. Obviously, “theoretical” 

guidance is necessary.  More about that later. 

 

SLOPE:  When the curve is a straight 

line, as in the example at the right, it 

follows a mathematical relation of the 

form  y = a + bx.   

  

     Its slope , defined as y/x, is the 

value of the constant "b".   

[Its "y-intercept", at x = 0, gives the 

value of 'a'.] 

 

To calculate the slope of a straight line 
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one chooses two points, say A and B, on the line.  If the coordinates of A are (xA, yA) and of  B 

are (xB , yB),  then y = (yB - yA) and  x =  (xB - xA).  The slope is the ratio y/x.    

 

Clearly the actual slope value of a straight line does not depend on where or how large an 

interval between A and B is taken.  Greater calculation accuracy is possible when A and B are 

far apart.   Points A and B should be chosen on the line, since the line averages all the data and 

is thus in principle better than any individual points.  Therefore, the points from which the 

slope is calculated usually should not be data points. 

 

The units of  y  and x are 

preserved when calculating and 

expressing the slope  y / x. 

 

The slope at any point of a 

curving line is defined as the 

slope of a straight line that is 

tangent to the curve at that point. 

 This slope is different for 

different points on a curve. 

 

 

 

INTERCEPTS:  The value of y 

when x = 0 is known as the 

y-intercept.  Similarly the 

intersection of the curve or its extension with the  y = 0 line (usually the x axis) is the  

x-intercept.    

 

Again, if the graph is a straight line, which can be represented by the equation 

y = a + bx, then the y intercept  (the value of y when x = 0) is the value of  'a'. 

 

Particular care must be taken in evaluating intercepts if the graph has been drawn using other 

than the line y = 0 and the line x = 0 as the x and y axes respectively.  That is, if (0,0) doesn't 

show on the paper.  [Usually 'a' is then found numerically from  a = y - bx, picking a point on 

the line for x and y, and using the slope for 'b'.  The x-intercept is -a/b] 

 

Hand calculators which do linear regressions may be used as a check on the slope 

and intercept values, but not as a substitute for plotting a graph.  Calculators 

have no common sense about ignoring obviously bad points from bad data or 

faulty data entry. 
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INTERPOLATION AND EXTRAPOLATION:  Interpolation is the estimation of the value 

of y for an x value lying between original data points. Drawing the smooth curve among the 

data values and reading values from that smooth line is an example of interpolation.  One 

extrapolates to obtain the value of y at an x position outside the range of all data.  Obtaining 

the intercepts is usually done by extrapolation.   

 

See the "ERRORS" section of this booklet for graphical estimation of errors in slopes and 

intercepts and for numerical calculation procedures. 

 

EXAMPLE  I.  When does a “best fit,” fit? 

(a cautionary tale about not quite constant acceleration): 
 

While Adam is out of the room getting some water to drink, his partners, 

Bianca and Charles, take the data shown to the right of position s and time 

t of a rider that is accelerated on a low-friction track by a string running 

over a pulley and attached to a hanging weight.  They present it to Adam as 

“Your turn to analyze it.”    Adam quickly enters the numbers into his 

calculator and gets the “best fit” as a straight line  s = 0.0669 + 0.1981 t.  

 

“There. Four places.  That should be accurate enough,” Adam says to 

himself. He asks his instructor if he can leave lab early and finish the 

write-up at home. 

 

The instructor says, “No!” and wants to see a plot of the data. 

Grumbling all the while, Adam plots the data and “best fit” and gets:  

 

Oops.  Adam realizes that he shouldn‟t have skipped making the crude 

plot requested in the lab manual to check for gross data errors. 

  

Presented with this evidence of their carelessness, his partners admit that they failed to note 

when they were in the „second meter‟ of the track 

measurement, and revise the data accordingly. 

 

Now the crudely plotted 

curve is smooth, though 

not straight.  (A computer 

fit might recognize some 

of this as a piece of a 

parabola, but by eye it is 

simply a smooth curve.)  

 

       t in 
sec 

  s in 
meters 

0 0.000 

0.50 0.076 

1.00 0.250 

1.50 0.524 

2.00 0.900 

2.40 0.232 

2.70 0.481 

2.90 0.647 

       t       s   s  rev, 

0 0.000 0.000 

0.50 0.076 0.076 

1.00 0.250 0.250 

1.50 0.524 0.524 

2.00 0.900 0.900 

2.40 0.232 1.232 

2.70 0.481 1.481 

2.90 0.647 1.647 

Air Track - revised raw data
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Undeterred by the curvature, which Adam dismisses as another experimental error, he again 

enters the numbers into his hand calculator and gets a resulting equation for the position of the 

rider as  

s = - 0.206 + 0.5968 t .  “Much better,” he says to himself, and again tries to get 

permission to leave. 

 

But his lab instructor won‟t agree.  “I want to see the plot with the best line.  And what does 

your equation mean?” the instructor says. 

 

So Adam plots it more carefully, with the best straight line, and reports, “The starting position 

was at negative 0.206 and the velocity was 0.5968.” 

 

[Of course his plot is larger and 

clearer than what shows here.] 

“That‟s odd,” says his instructor.  

“I thought I saw the rider 

accelerating down the track, not 

moving at constant velocity.   And 

is your data within experimental 

uncertainty of the fit line?” 

 

To answer this, Adam returns to 

his partners.   

 

First, they agree that the rider 

accelerated, and second, their 

estimate of data accuracy is  

 0.02 sec and  0.001 meters 

(which they should have put on 

the original data table).  Adam 

quickly sees that the “best fit” often misses the data by over a hundred times the estimated 

uncertainty of the points.  But this is a small problem compared to the fact that his entire 

analysis is invalid because, he now realizes, by fitting to a straight line he had incorrectly 

assumed constant velocity.  

 

Adam (belatedly) begins to think about the experiment.  A string over a pulley, attached to a 

weight should supply a constant force to the rider.  Therefore, it is theory for constant 

acceleration, not constant velocity, on which he should base his analysis.  Checking this out by 

actually calculating a batch of velocities seems like too much work, but he remembers that the 

kinematics equation for constant acceleration is x = x0 + v0t + ½ a t
2
. Therefore he enters the 

data into an available computer spreadsheet, specifies a quadratic fit, and gets the graph shown 

at the right of the next page. 
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-0.5

0

0.5

1

1.5

2

0 1 2 3

Time in Seconds

P
o

s
it

io
n

 i
n

 m
e

te
rs



 

 33 

Adam is happy, but his instructor 

still isn‟t.  The instructor points out 

that the computer‟s “trend line” still 

misses several of the data points, 

including the 0,0 point, by nearly 20 

times the estimated error in the data. 

  

 

Therefore, while the line may be a 

“best fit”, it is not a satisfactory 

fit.  Even though this can be a take-

home report, the lab instructor 

encourages Adam strongly to re-

solve the problem before leaving 

the lab. Besides, he points out, the 

manual‟s instructions specifically 

request a plot of velocity vs. time. 

 

Adam remembers from a homework 

problem that for constant 

acceleration the average velocity 

over a time interval is equal to the 

instantaneous velocity at the time-

center of the interval, so he recopies 

the data leaving room for the 

necessary calculations.  He plots the results. 

 

 

Wow!  

Look at 

that.  

 

Two  

straight  

lines  

instead  

of one  

overall  

curve.  

 

 

 

 

    t   

 sec 

   s      
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  s     

 m. 

   t     

 sec 

    t 

midpt 

 v  m/s 

0 0.000     

  .076 0.5 0.25 0.152 

0.50 0.076     

  .175 0.5 .75 .350 

1.00 0.250     

  .274 .50 1.25 .548 

1.50 0.524     

  .376 .50 1.75 .752 

2.00 0.900     

  .332 .40 2.20 .830 

2.40 1.232     

  .249 .30 2.55 .830 

2.70 1.481     

  .166 .20 2.85 .830 

2.90 1.647     

Air Track - Position vs time
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 No wonder all those attempted shortcuts failed.  Adam‟s plot is, of course, much larger and 

clearer than what shows here.  He can see that all the points are now within a reasonable 

uncertainty of a line.  As a check he numerically evaluates the line‟s value at a few data times 

and compares velocities with the table values. 

 

But what happened at the time of 1.95 seconds?   

 

Adam looks at his earlier plot of position vs. time and sees that a time of 1.95 seconds 

corresponded to a rider position of 0.83 meters on the track.  So he goes to the track used for 

the data, places the rider at what he estimates to be a position of 0.8 from the arbitrary “0,0” 

data point, attaches the string, runs it over the pulley, and …     There is the accelerating weight 

just hitting the floor, ending the acceleration.  [Clearly something his partners should have 

noted in the data.] 

 

Finally the lab instructor is willing to sign Adam‟s data and, since the lab period is over 

anyway, let him finish at home.  He reminds Adam to calculate the acceleration and initial 

velocity from the velocity graph and to decide how much to round off, for “significant figures,” 

any computer values of the equation‟s coefficients.   

 

What should Adam learn from his experience? 

1. Be part of taking the data. 

2. Record uncertainties as well as values. 

3. Note other events – like the weight hitting the floor. 

4. Do make that crude, as-you-go plot; preferably as data is being taken. 

5. Apply appropriate theory. 

6. When you need to get results from a graph, plot it carefully and big  

     enough to see whether the “fit” really fits. 

7. Don‟t blindly trust computer output.  Just being “digital” or displaying  

    a lot of “places” in a numerical result doesn‟t make it correct. 

8. Don‟t leave the lab before resolving a data problem. 
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"Log"  PAPERS and SCALES 
 
Semi-log and log-log papers and scales are used quantitatively to show relations between 
quantities when theory predicts exponential or power law behavior.  They are also used 
qualitatively to display data that extends over a very large range of the variables. 
 
When a number is plotted on a log scale its position represents the log of that number and the 

bother of looking up many logs is avoided.   Therefore, when plotting on a "log" scale you 

must use the printed numbers, multiplying successive "decades" by powers of 10.   For 
example, you cannot arbitrarily change  " 1    2   3  4 56..." into "3    4   5  6 78...".   Care in 
plotting is necessary, as the value of intermediate intervals keeps changing. 
   
For ease of reading the graph you should supply the decimal point or powers of 10, so that a 
typical "x" scale would read:  
" .1       .2     .3   .4  .6 .8 1       2     3   4  6 8 10      20   30  40 60  .. ".   
Note that there is no "0" on a log scale (because this would correspond to a position of  – ∞ ). 
 

Semi-log paper is useful if the theoretical relation is H = H0 e
bt

.    

Since ln H = ln H0 + bt,  a straight line with slope "b" will be obtained when  (ln H) is plotted 

against t. 

 

Evaluating logs graphically:   The logs (to the base 10) have already been taken by the paper 

scale itself.  That is, the ratio of a distance on the log paper to the length of a "decade",  

the 1-to-1 distance, is the log10 of the value of the ratio of the endpoints.  This process will be 

made clear in an example below. 

 

Thus for the semi-log slope: 

b = (ln H2 - ln H1)/Δt  

   = 2.3{log H2 - log H1)/Δt 

   = 2.3 log (H2 /H1)/Δt     = 2.3 (DH /D)/(t2 - t1)  

where DH is the distance (in cm.) between points H2 and H1 on the line and D is the 

decade length (also in cm.)  "b" must have units so that the total exponent is unit-less, 

typically sec
-1

. 

 

Example II, the leaky water bucket. 
 

Adam, Bianca and Charles are still working together.  

This time they‟ve recorded the times at which the level 

in a cylindrical water “bucket” passed each centimeter 

mark on the side of the cylinder. 

It‟s Bianca‟s turn to lead the analysis.  She, of course, 

begins with a quick, crude plot of the raw data.   
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    The step discontinuities immediately indicate that there is a problem.  Bianca realizes that as 

Charles read off the times, responding to Adam‟s “2, 1, Now‟s”, Charles‟s “one minute ten” 

got recorded at “110”, etc.  She corrects the data accordingly. 

 

     Although the data was taken with height as the “independent variable”, it will be treated in 

the analysis as if height is “dependent,” on the „y‟ axis, with time  “independent” horizontally.  

Therefore, while correcting the data mistake, Bianca also reorders the data columns to treat it 

as if height is the dependent, „y‟, variable. 

 The corrected data plots as a smooth curve, but it‟s not 

obvious how to obtain the numerical relation.  

 

Looking at the “physics” of the situation, Bianca sees that 

the rate of flow out the leak, and therefore the rate of 

change of the height, should be proportional to the height. 

        

    H/t = b H 

 

re-arranging gives        

    H/H =  b t   

 

which leads to:  

H = H0 e
bt

     or   ln H = ln H0 + bt 

 

Therefore, if (ln H) is plotted against t, a straight line of slope b should 

result.  Since H is decreasing with time, b should be negative. 

 

At this point Bianca could 

laboriously calculate 

natural logs of all the 

height values and plot them 

against time, but she has 

read the manual. The 

instructions ask her to use 

semi-log paper. Since on 

the semi-log paper Bianca 

simply plots the data on the scale provided by 

the paper, she sees quickly see that her analysis 

theory is correct.  (see next page) 

Bianca is initially concerned that the paper 

seems to be doing log10, while the theory refers 

to ln, i.e. loge .   
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Then she remembers that since  

 

  ln x = (ln 10)(log x) = 2.303 log x 

 

the shape of the line is not affected.  The factor of 2.303 must be remembered in the analysis, 

however. 

 

Bianca‟s own graph is, of course, full page size and its additional intermediate lines allow 

plotting of time and position to approximately the accuracy of the data.  In drawing a straight 

line Bianca sees that she has a choice between a reasonably good fit of all points or an 

excellent fit of all but the first and the last two points.  She chooses the latter.  Her reasoning, 

supported by the instructor, is that the first point was taken under different circumstances 

(starting the clock while releasing the cork), while others were taken “on the fly.”  The last two 

were for a very slow water flow and may have been subject to additional slowing from surface 

tension or other unknown factors. 

 

The slope, which will provide the numerical value of “b” can be calculated two ways. 

 

method 1:  b = (ln H2 – ln H1)/(t2 – t1)  

taking values off her best fit line at convenient times, Bianca gets 

      (ln 1.16  ln 18.27)/(200 – 0 )  =  (.1484 – 2.905)/200 =  0.0138  sec
-1

 

 

method 2:  b = 2.3 (DH/D)/(t2 – t1)   

        where D is the size, in centimeters, of a “decade” on the paper,  

        and DH is the vertical distance in cm.  between points on the line at times t2 and t1.  

[Note: the ratio DH/D gives log10 of the vertical distance between the chosen points.] 

By selecting a time interval over which H changed by x10  

(i.e. one decade), Bianca easily  gets 

      b = 2.3 (-9.5/9.5)/(210 – 44)  =  0.0139 sec
-1

   

where 9.5cm is the measured vertical length of one “decade” on her graph paper. 

As a way of estimating the uncertainty, Bianca also measures the slope of the line she would 

have drawn if she considered all data of equal value.   

 

She gets b = 0.0132 sec
-1

.   

 

Taking this as her “alternative best fit” for uncertainty estimation, on her „Summary of Results‟ 

page she lists the final value of b as  

b = -0.0137  0.0004 sec
-1

.  

 [Note that the statement of uncertainty is consistent with the statement of the value, and that 

both have the same units.] 
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Log-log paper is used to demonstrate the relation:    I = I0 r
P
.      

Since  (log I) = (log I0) + P (log r), the log-log plot of  I vs. r is a straight line with slope P and 

intercept (log I0) {read the value of I0 directly on the printed scale at r = 1, (i.e.log r = 0)}. 

 

Evaluation of the slope for log-log paper  to get the power P is: 

      P = (ln I2 – ln I1) / (ln r2 – ln r1) 

          = [2.3 (DY/D)/(2.3 DX/D)] which is just  

          = DY/DX  {both measured in cm.) 

 

 i.e. the loglog slope is measured with a ruler, NOT by reading the scale values. This assumes 

you are using good quality log-log paper with the same “decade” size (in cm) both 

directions. 

 

Note that the power P carries no units. 

 

Example:  Light intensity vs distance from a small source 

The α β γ team, as they now call themselves – to sound more scientific – is still together.  They 

have made measurements of the light intensity (brightness) at a detector that is moved farther 

and farther from the light source.  It‟s Charles‟s turn to lead the analysis of the team‟s data.   

Charles knows that light from a „point‟ source should obey 

the “inverse square law,” a power law that can be evaluated 

using log-log paper. 

 

Never one to “waste time” on hand graphing when a 

computer is available, Charles enters the data into a 

spreadsheet, asks it to add a trendline best fit, and prints out 

the result.  He then dutifully measures the slope with a 

ruler, getting approximately –1. Except for wondering why 

the computer statement of exponent is about  –1.7, 

compared to his –1, Charles is satisfied.    

 

But Adam and Bianca disagree with 

Charles immediately.    

 

“The line misses several points by 

more than 15%,” says Bianca, “and our light meter claimed 5% 

accuracy.  Therefore, the trend line is not a satisfactory fit” 

 

Adam points out that the computer‟s printout of the graph doesn‟t have 

the same decade sizes in y and x. This would explain the discrepancy 

between slope calculations. 
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Charles counters that, since the data are not, in fact, in a straight line it will be impossible to 

get a “satisfactory” fit.  The group brainstorms on this problem for a few minutes and 

concludes: 

  

1. Stray light from the room would make the distant dim values read high.  Thus the last three 

data points should be ignored. 

  

2. At the closest distance, the distance was not “many times” the size of the source.  Thus the 

source might not be acting as a “point” source obeying the inverse square law.  Therefore the 

closest data value also should be ignored.  

 

3. They need to hand-plot on „good‟ paper so that the “decade boxes” are square.  

 

When this is done and they draw a “best fit straight line” ignoring the first, and the last three 

points, they get a full page version of the graph at the right. 

 

Measurement of the slope, with a ruler on their „good‟ graph, gives a value for P  of  -1.90.  

(The computer now gets 1.867). Adam and Bianca are satisfied, but Charles decides he needs 

to redeem himself for the initial mistakes – and get some use out of the spreadsheet after all. 

He suggests, “If stray light made the last points too high, maybe it affected all the values, just 

more subtly. On the spreadsheet I can easily subtract 

a fixed value from all the intensity points and see 

what it does to the fit.” 

 

His first try, subtracting 0.5 ft cndl from all points 

gives the lower points of the graph at the left. 

 

Clearly an overkill, but it shows what a large effect 

an added 

constant 

value can 

make to a 

log-log plot. 
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By trial and error, Charles finds that a subtraction of 0.3 

foot candles, representing a constant stray light 

contribution, gives the best fit.  The group adds this 

information to their hand-plotted graph at the right. 

 

Their graphical measurement of the slope now agrees 

with the computer‟s trend line (and with expectations of 

the theory) as   P = 2.00  [no units].   

 

They decide to state the final result for the power law as:  

 

P = 2.00  0.05,  

 

with the uncertainty based largely on how quickly the 

slope changes when differing values of stray light are 

assumed.  That this uncertainty is less than the light 

meter‟s specification of 5% does not, and should not 

concern them.  It is reasonable to assume that the light 

meter‟s constancy is better than its accuracy - and if it 

consistently reads, say, 5% too high, this would have no 

effect on the slope and power law calculation.  

 

 

Note on log-log paper intercepts:   On log paper 

the distances in cm are proportional to the logs and each 

decade is a power of 10.  Hence 10
-6

 is 6 decades left of 

10
0
 = l, and thus zero = 10

∞
 is ∞ decades away, far off 

the paper to the left or bottom. Remember that the 

equation  I = I0 r
P
, plots as a straight line only in the 

form log I = log I0 + P log r.  Thus the intercept, giving 

log I0 is found where (log r) = 0, i.e where r = 1, not where r = 0.  Therefore, the  I0 value can 

be read directly on the graphed scale at  r = 1.   [1600 in the example above] 

 

Alternatively, after you have solved for the power P, the constant I0 can be found by picking a 

specific point (xR, yR) on the experimental line, reading IR at point R, and calculating I0 from   

I0  = IR R
-P

. 
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 Semi-log: to evaluate H = HO e
bx

 type relations (plotting log of "y" coord)        

       H0 = (y value at x = 0)    read number off the 

                scale, not distance, don't take log. 

 

       exponent  "b" = 2.30 (DY/D)/ΔX    

or  (ln Y2 - ln Y1)/(X2 - X1)  where D's are  

distances, but X and Y are numerical values. 

 

  log-log:   to evaluate I = IO x
P
 type relations 

      I0 = (I value at x=l) read number off the scale, not distance, don't take log. 

 

      Power   P = Δy/Δx  both measured in distance, not  numbers on the scale.    

 

      Be sure   to use „good‟ graph paper on which the „decade‟ size is the  

      same in both directions. 
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NUMERICAL CALCULATION OF SLOPES AND INTERCEPTS  

 

Most scientific/engineering calculators now provide linear regression "best fits" for the basic 

straight line relation.  Some calculators, and most of the computers in the labs also provide 

least squares fits for a few other 2-parameter equations and/or least squares fits for a 

polynomial of several terms.  Often a "coefficient of fit" is given; the most common form of 

which reports "1.00" for a perfect fit (all points exactly on the line) and down to "0" for no 

correlation between the two variables.  Very few provide a standard error estimate for the 

coefficients defining the best fit. 

 

The equations which produce these values are as follows  

[for the   y = a + bx   line]: 

 

a =  [y][xx] - [x][xy]              b =  n[xy] - [x][y]  

         n[xx] - [x][x]                       n[xx] - [x][x] 

 

where:  n is the number of data xi,yi pairs taken,  

[y] = Σ yi of all data,       [xx] = Σ xi
2
 of all data,  

[xy] = Σxiyi  etc. and one is assuming that the x values are accurate and that the scatter is in the 

y values. 

 

FOR A NUMERICAL EXAMPLE OF THE USE OF THESE FORMULAE AND BOTH 

GRAPHICAL AND NUMERICAL ESTIMATES OF THE UNCERTAINTIES IN 

GRAPHICALLY OBTAINED VALUES, REFER TO THE "ERRORS" SECTION OF THIS 

BOOKLET. 

 

DIFFERENCE GRAPHS 
When the accuracy of the data is greater than can be displayed on a moderate sized graph, the 

“difference plot” becomes a way of magnifying and making visible the difference between the 

data and the smooth line, or between the data and a theoretical fit.  This is particularly useful 

for computerized plots, where the graph 

resolution is almost always poor and 

unreadable.  For example, if in “Example I” 

Adam had done a difference plot between 

his data and his quadratic fit, he would have 

had the lower line in the graph at the right.  

(The “wavy” difference has been magnified 

by 10 for the plot.)  He would have seen 

immediately that the differences were many 

times the expected uncertainty, and that 

they were clearly systematic, not random.  

 

 

y = 0.1538x
2
 + 0.1389x - 0.0187

-0.5

0

0.5
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GRAPHING NON-LINEAR 

RELATIONSHIPS 

 

Graphs are also useful to display 

relationships between variables even when 

the relation cannot be reduced easily to a 

linear one.   Often a smooth curve is drawn to 

guide the eye along the data.  A better 

treatment is to plot a theoretical graph on 

the same coordinates as the data, adjusting 

the parameters of the theoretical equation to 

make it fit the data points.  Computer 

spreadsheets are particularly useful for this 

approach. 

 

Example:  Current vs frequency for an RLC 

resonant circuit.   In this example log scales 

are used simply to display a huge range of 

values on a single graph. 

 

 

FREQUENCY DISTRIBUTIONS: 

 

A less common type of graph used by scientists is the frequency distribution. Here "what you 

observed" is plotted on the horizontal "x" axis, and "the number of times you observed that 

value" is plotted on the vertical "y" axis. 

 

HISTOGRAMS    When the "x" values are grouped 

together so that the graph becomes a vertical-bar graph, 

the plot is known as a histogram.  A typical example is 

the exam score distribution for a class.  Here an "x" 

label of 10 includes scores from 6 to 10, etc.  When 

plotting a histogram, care must be taken not to "double 

count" the ends of an interval.  For example, do not  

make one bar represent the number of students scoring 

10, 11, 12, 13, 14, or 15; and the next 15, 16, ... 20; and 

so on.  This would count those scoring 15 twice. 

 

Another example is the plot of the count rate from a constant radioactive sample (x) and the 

number of times that rate was observed, when many observations have been made. 

 

Frequency distributions in which the observed quantity should have been a fixed value, but its 

measurement varied, are the basis of the error analysis of the first section of this booklet. 
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SPECTRUM   When the "x" axis of 

a histogram is grouped so finely that 

it becomes effectively a continuous 

variable, the frequency distribution is 

known as a spectrum.  In a typical 

spectrum, at the right, the "x" value is 

the wavelength of light from a hot 

object and the "how often a photon of 

that wavelength was observed" 

becomes the intensity of light "at" 

that wavelength.   In this case the 

frequency distribution is treated as a 

normal XY plot.  

 

 

CALCULATOR LINEAR REGRESSION “BEST FITS”   The basic rule in physics 

instructional labs is that you should not use a calculator result without an accompanying graph 

that demonstrates that the numerical result really fits the data.  Without a graph that includes 

the plotted best fit line there is no way to check whether the data “makes sense,” or even if a 

mistake has been made in entering the data into the calculator.  However, a calculator‟s use is 

perfectly acceptable, even desirable, to check a slope or intercept calculation from a hand-

plotted graph. 

 

When using a calculator‟s result one must be careful not to confuse “number of places 

displayed” with “accuracy of result.”  The latter must be estimated separately [and is the 

subject of the first section of this booklet]. 

 

 

COMPUTER PLOTTING (Spreadsheets)  The basic rule (default condition) is that 

computer-generated graphs are acceptable in addition to, but not as a replacement for hand-

plotted graphs in the physics instructional labs. An obvious exception is for those labs in which 

the primary data is taken by the computer and goes directly into a dedicated computer analysis 

and plotting program. 

 

It is true that modern computer spreadsheets such as Excel or QuatroPro make producing good-

looking graphs very easy – perhaps too easy.  Instructionally, that is one count against them. 

There is nothing about keyboard numerical entries or mouse clicks that helps one appreciate 

how a graph displays the relation between physical quantities, or that teaches the skills of 

plotting or reading results from a graph.  The other instructional deficiency is that the printout 

of a computer graph rarely has the resolution to verify whether a “best fit” line really fits within 

the accuracy of the data, or to allow precise reading of interpolated or extrapolated values. 
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On the positive side, spreadsheets are very useful for examining “what if” situations, such as 

the effect of stray light in the log-log graph example above, starting page 38.  Computer graphs 

are also handy for getting a quick plot to see whether the data makes sense, or for easily 

switching between regular and logarithmic plot axes.  A spreadsheet also makes it easy to 

generate a “difference plot,” which displays the difference between the data and the trend line.  

This can facilitate discovery of systematic errors or mismatches between the experiment and 

the theory being applied.   And, finally, the easily accessible “trend line” on the computer graph 

is a good check on what has been calculated from the hand plot.  (One needs to be careful not 

to believe all the displayed “places” of the trend line equation, however.) 

 

 

A FEW QUICK HINTS ON COMPUTER PLOTTING.  

   

a) Very important: one must specify the “x,y (scatter)” type plot for most physics lab graphs. 

 The “line”, “area”, and “stock” types have some options that look superficially like x,y 

graphs, but these all determine the horizontal position from the data number (1
st
 reading,  

      2
nd

 reading …), all equally spaced, rather than from the „x‟ data value.   

 

b) To display all the data, but calculate a “trend line” which ignores some points, as was done 

in several of the above examples, copy the part of the data to be fit into a new column and 

make it into an additional “series” for the plot.  Then make those points themselves small and 

colorless using the right click “format data series” menu.   

 

c) If you wish to reformat the display of a particular data series, but are having trouble finding 

it for „right click‟ selection, temporarily move one of the data points dramatically to an easily 

found location. Remember to move it back after the change has been accomplished. 

 

d) Note that the drop-down menu from “Chart” after a „left click‟ selects the whole graph, is 

slightly different from the ones available from clicking, left or right, at various places on the 

graph. 

 

e) When using a computer‟s trend line, be sure to restrict the fit to something justifiably related 

to the theory.  Higher order polynomial fits will, for example give better coefficients of fit, but 

produce nonsense extrapolations.  Furthermore, the coefficients are no longer easily identified 

with velocity, acceleration, etc. in simple kinematics situations. 
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Three Sample problems for your Spreadsheet. 
 

1. The data to the right describes an object found in many beginning 

physics labs.  Describe the object. 

 

 

 

 

 

2. What is the relation between period (year length) 

and orbital size for the planets? 

 

 

 

 

 

 

 

3. A leaky bucket again, but this time your partners measured height 

from the table top, instead of above the hole.  How far is the hole 

above the table? 

 

 

 

 

 

horizontal vertical 
8 18 
1 4 
5 21 
3 8 
6 14 
2 6 

size days in yr. 
0.387 88 

0.732 225 

1.000 365 
1.520 686 
5.200 4329 
9.540 10770 

cm. height time 
20 1 
19 5 
18 10 
17 14 
16 19 
15 24.5 
14 30 
13 37 
12 43.5 
11 51 
10 60 
8 80.5 
6 110 
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Answers: 

1.  If you got the graph at the near right, you 

did a “line” plot, rather than “x,y.”  

 

If, however, you did an x,y plot, and realized 

that the y value for x=5 was in error (digits 

transposed), then you identified the object as 

an inclined plane with a slope of 2 and a 

starting height, at x=0, of 2. 

 

 

 

 

2.    Period proportional to (orbit size)
3/2

, and 

Kepler discovered it without calculators, 

computers, or even log tables! 

 

 

 

 

 

 

 

3.    2.0cm.  Unfortunately, the coefficient of fit, 

R
2
, can‟t distinguish among 1.8 through 2.2. 
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”UNITS” ARE IMPORTANT 
 

“A journey of a thousand millimeters begins, and ends, with a single step” 

   

Units are important throughout any scientific measurement, from data to calculated 

results.  The value (number) of a result or a piece of data is nullified if your don‟t know what it 

was measured “in.”  Furthermore, if the units of a final result are not appropriate for its 

function, you know it must be wrong.  Units have, in effect, veto power over the correctness of 

an answer – whether it is the answer to a homework problem or the culmination of weeks of 

research.  If the units are wrong, the answer is wrong.   

Unfortunately, having the desired units does not prove a result is correct, but it is a 

good indication that any calculation error is a unit-less one such as a factor of ½, or 4, or pi. 

 

 

UNIT CONVERSIONS; UNITS ALGEBRA 

 

In “units algebra,” just as in “numbers algebra,” you can always multiply by “one” without 

changing anything.  So, for example: 

 

 

note that the value of each ratio in parenthesis is exactly one.  The extra trailing zeros on the 

inches/cm bracket are just to emphasize that this, too, is a precise, defined ratio that is good to 

any number of places. 

  

     Many “real life” situations do not require an exact conversion.  For example, if you are 

driving a car with an American-made speedometer in Europe, note that 0.6214 is close to 5/8 

and between 0.6 and 2/3.  So if the speed limit says 50, drive 30; 80, drive 50; 90, drive under 

60; etc.     

  

      Some other useful approximations: a liter is about 10% larger than a quart, a meter is about 

10% larger than a yard, and 1 mile  1600 meters. 

 

For the more complicated conversions that come up in calculations, keep in mind a few basic 

equations.   

 

Newton‟s F = ma gives you as a valid “one” bracket, 

 

  

and Einstein‟s  E = mc
2 
supplies you with:   
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78533

1
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1

In a consistent set of units, e.g. SI, a number one (1) is understood to be in front of each unit 

word in the above parentheses.  When mixing families of units, numerical values appear in the 

conversions again,  

as in  
 
 
 
 
--------------------------------------------------------  
Always remember that the argument of a trig function, logarithm, or any exponential must be, 
as a whole, unit-less.  You cannot raise 10 to a meter power, calculate the log of a Joule, or 
find the sine of a kilogram! 
--------------------------------------------------------  

 

 

Two units are worthy of special mention: the degree (temperature) and the radian.   
 
 Kelvin, Celsius, and Fahrenheit degrees are all equally good for comparing two 
temperatures to state which is hotter and by how much.  But only Kelvin can be used for 
calculations leading to energy or speed of molecules where, combined with other constants, it 
is involved in being raised to a power or fractional power. 
 

 One revolution = 360 = 2 radians.  Thus degrees of angle and radians are both defined as 
fractions of “once around” and have no real units to call their own.  However, radian is the unit 

which must be used in dynamic calculations such as FCENTRIPETAL = m r 
2
  to avoid further 

conversions.  You can take the sine of a radian, or have radians in an exponent, etc.  It is wise 
to carry the radian unit through all calculations, dropping it only at the end if the final answer is 
not a statement of angle. 
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SOME HINTS ON TAKING GOOD DATA 
 
ALWAYS KEEP A TIME LINE.  For the instructional lab, just the date is usually enough.  But 
for “real world” research a more detailed record of time of data is important.  For example, the 
first firm evidence that “cosmic rays” were of extraterrestrial origin was from correlating count 
rate to time of day. 
 
DISTANCE MEASUREMENTS: 
    1.  Meter sticks:  Use on edge, with the markings touching the object being measured, if 

possible.   Don't trust the stick's ends.  If you have to use the end, such as measuring the 
distance from a wall, first check with a second meter stick that the end of the one you're 
going to use is neither short nor extended. 

 
If you absolutely can't get the markings next to the object, find some reliable way to 
avoid parallax (the dependence of the reading on the position of your eye):  a drafting 
'square', a bubble level, a plumb bob. Even just sighting across the width of the meter 
stick to use the mm markings themselves is better than nothing.  Best is to arrange a 
mirror behind the object.  When you position your eye so as to line up the markings, the 
object, the reflection of the object, the reflection of the scale markings, and the 
reflection of your eye pupil,  you are viewing exactly perpendicular to the mirror.  The 
mirror must, of course, be in the same plane at both ends of the measurement.  Usually 
this works best using a single flat mirror larger than the object. 

 
   2.  Vernier calipers:  The function of the vernier is to reliably sub-divide the least count of 

the main scale.  The basic reading is the location of the "0" mark of the vernier against 
the main scale.  Any time the total reading disagrees with what you would have read 
without interpreting the vernier, you have made a mistake.  The vernier only gives you 
what would have been estimation places without it. 

 
Special care in interpreting a vernier is needed in three cases: 

a)  The "0" mark is just beyond a numbered main scale mark,  before the first minor 
     tick. Don't lose the zero when adding the vernier value. 
b) The main scale is itself subdivided and the vernier range represents half, 

typically, of a main scale division.  You must decide whether the "0" mark is in 
the first or second half of the main 
scale division. 

c) The vernier extends beyond one 
main scale major division.   

 
At the right are illustrations of regular and 
'problem case' vernier readings. 
 
 
 
Notice that since the vernier lines are slightly 
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closer together than the main scale markings, when the best lineup has been selected the slight 
offset of neighboring vernier lines seem to “lean in” towards the best choice.  If you do not see 
this symmetrical misalignment neighboring the chosen “best” lineup, then the choice was 
wrong.  Try using this test on your choice of best alignment in the examples below. 
 
. 
 
 
 
 
 
 
 
 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DISTANCE MEASUREMENTS with Vernier (continued):   

Estimated uncertainties for vernier readings are discussed in the answer to self-test 
question #5, pages 24-25 above. 

 
Most vernier calipers have prongs sticking out the back for inside  
diameter measurements, and some have an extending shaft for depth-of-a-hole 
measurement. 

 
3. Micrometer:  A micrometer is not a C-clamp.  It must be used gently, preferably utilizing 

the slip clutch, to avoid squashing the sample.  It is important to check the "zero", i.e. 
take a reading with no sample and the same pressure as used on the sample. 
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Since most micrometers use a sub-divided main scale, the key to correctly reading one 
is to decide which lines on the main scale have been uncovered.  This is particularly 
tricky when one is just short of a main division.  The only way to be sure is to:  look 
carefully at the appearance when the "zero" is checked; and observe how far you have 
to open the jaws, after taking the reading, until the next main scale mark or half-way 
mark is uncovered. 

 
The direct reading, least count, of a typical micrometer is  

to  0.01mm,  i.e. 10 times more precise than the 10:1 vernier caliper. The estimation 

place is thus  0.001 mm, though on most samples the readings will not be repeatable 
to this value. 

 
(“cheap” micrometers especially)  Sometimes the numbers on the main scale are 
misleading.   For example, enough of the 2, of 20, is uncovered when the actual size is 
still 19,  to fool you - unless you then open the micrometer most of a millimeter until 
the real 20 appears. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TIMING MEASUREMENTS: 
 
   1. The student controlling the timer must be the one observing the action timed.  Cooperation 

in labs is encouraged, but not to the extent of having one student hold the stopwatch 
and the other tell him or her when to start and stop it.  Get the cooperation by taking 
turns timing successive events or repeated trials. 

 
   2.  Whenever possible time between similar events.  Avoid "sports" timing, between a 

gunshot and reaching a tape, where reaction time enters only at one end of the interval 
(since one watches and anticipates the approach to the tape).   

 
   3.  On repetitive motions (e.g. pendulum swinging) remember the cycle count must start with 
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zero as the watch is started.   A good way to do this is a countdown while watching the 
motion.   For example:  3,  2,  1,  0 (starting timer), 1,  2, etc.  Of course, again time 
between similar events, e.g. top-to-top of a bounce, not release-to-top. 

 
4. How many swings or 'bounces' should I time?  First you must establish your timing 

reliability - by successively timing something that is always the same, such as the same 
mass “bouncing” the same amount while hanging from a spring.   [Just because the watch 
reads to 0.01 seconds doesn't mean your timing is that good.  The weak link is in 
observing the motion and pushing the button.]  Practice until your successive trials are 

consistently within  0.2 sec, and usually within  0.1 sec of the average.   Then if you 
want, say, 1% accuracy in the period you must time for a total of at least 100 times your 
timing uncertainty (a minimum of 10 sec. in the example).  If you want ½ % accuracy, 
time for at least 200 times your uncertainty, etc.  Note that it is the total time interval 
measured that counts.  It makes no difference whether this was 1 cycle of a slow motion, 
or 20 of a fast one (unless the timing uncertainty is larger for the slow motion.) 

 
Remember, the gain in accuracy from a long time interval including many cycles of the 
motion applies only to truly repetitive motion.   You can't use it with something whose 
period is changing, such as a bouncing ball. 

 
   5.  Do repeated measurements whenever you can.  This is not for a statistical reduction in 

uncertainty, but just to catch a mistake, such as a counting error. 
 
   6. (Specific to certain digital stop watches)  Take care when reading the stopwatch if the total 

time is over one minute.  The display is confusing.   
   A reading of   0154 62  is one minute, 54 sec, 62 hundredths    
       (i.e. 114.62 sec) , NOT  154.62 sec. 
 
 
MASS MEASUREMENTS 
   1. Old double-pan balances:  Use dynamically, averaging the left and right swing positions.  

Don't waste time centering the swing without the sample, just note where the no-load 
balance point is.  It is important to place the objects on the center of the pans. 

 
   2. Digital balances:  Don't drop the sample onto the plate, place it on carefully and well-

centered.  Check that the expected units are displayed; most digital balances are multi-
scale. 
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MULTIMETERS  (Volts, Amps, Ohms) 
 

To use a multi-function meter you have to make two choices: function selection and range. 

The function selector tells the meter whether you are measuring voltage, current, or 

resistance.  This should always be set before connecting the meter to whatever is to be 

measured. 

The range should be chosen to be larger than the maximum reading expected.  It, too, 

should be chosen before connecting the meter.  The range and function selection together 

determine the “units” of the measurement. 

On analog meters the range switch tells which of the several printed scales to read.  

There are several scales, for example: 0 to 5, 0 to 10, and 0 to 25. One reads the scale that ends 

with the range selected.  For example, if the needle position is half of full scale on a range of 

10, one reads the scale ending with 10 and gets a value of 5.  The same needle position on a 

range of 25 would be the result of an input of 12.5.  If the range is set on 100, one reads the 

“10” scale and mentally moves the decimal to make the reading 50. And a midway position on 

the 2.5 range would be read as 1.25 on the “25” scale.  It is up to the user to read the correct 

scale and place the decimal point appropriately.  Generally, for greatest accuracy, one should 

choose a range that puts the needle position in the upper half of the selected scale.  If the range 

switch is set too low the needle goes off scale, potentially damaging the meter mechanically if 

it hits the end too hard. 

On digital meters the range selection is one digit more that the maximum value 

readable on that range.  For example, on a range of 20 volts, the maximum readable voltage is 

19.999V.  If the value being measured is larger than the range, an error is indicated by a 

flashing display, or an “e”, or, most often, by a reading of  “1._ _ _ _”, depending on the meter 

maker.  The meter places the decimal, and the user needs only to note whether the range label 

is, say, millivolts, volts, or kilovolts.  

 Unless the multimeter is a “permanent” part of the setup, it should always be 

disconnected and left on “OFF” or a high “Volts” range to protect it against the next user’s 

thoughtless connection before selections. 
 
 
 
 

OVERALL DATA REMINDER 
 
Always record the value, units, and estimated error.  Then look at what you've written down 
and ask yourself, "Is this reasonable?"    It's easy to correct a data error "on the spot";  it's very 
hard to correct it a week later when writing the report! 
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MORE SELF-TEST QUESTIONS 

 

1. The motor displacement on a typical 1960‟s “muscle car” was  

    440 cubic inches.  What is this in the more modern statement of liters? 

 

2. You measured the “small angle” period of a pendulum twice.  At the count  

     of ten swings you had 13.52 sec; for the count of 20 you had 28.48 sec.   

     What is the period. 

 

3.  You‟ve measured the volume of a cylinder with an axial hole two ways:  

by measuring its dimensions, and by measuring the bouyant force on it when immersed in 

water and using Archimede‟s principle. 

Are the two results “consistent”?  Here is your data. 

outside diameter 3.816  0.004 cm  

hole diameter       0.42  0.02 cm 

cylinder length   3.902  0.004 cm 

scale reading dry  356.2  0.2 grams 

scale rdg. submerged  312.5  0.3 gma 

density of water 1.00 gms/cm
3
  (assumed) 

 

4.  Theory says that the period of oscillation T of a mass on a spring  

is 2(MTOT/k)
1/2

 , where MTOT is the total mass (i.e. added mass M 

 plus effective mass m of the spring), and k is the spring “stiffness.” 

 

    Plot the following data to find m and k 

 M (added) T 

   50 grams 0.548 sec 

   150  .775 

   250  1.054 

   450  1.223 

  1950  2.450 

  2950  3.000 
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MORE SELF-TEST ANSWERS: 

 

 

1.  

 

 

2.  13.52/10 = 1.352  .02;     28.48/20 = 1.424  .01   

[ values based on generous 0.2 sec timing uncertainty estimate] 

     Clearly inconsistent.  You probably started counting with 1 instead of 0. 

    This assumption would give you 13.52/9 = 1.502 and 28.48/19 = 1.499. 

    These are consistent, but if this were a real situation you better go back  

    and re-time to be sure.  

 

3. Volume by dimensions 44.09  .11 cm
3
    

       important intermediate steps: 

   (D
2
) = 2 D D = 0.0305;  similarly (d

2
) = 0.0168 

 V/V = sqrt{(H/H)
2
 + [(D

2
 – d

2
)]

2
} = .0026 

     Volume by immersion:  43.6  0.2 

     difference of 0.5 cm3  is greater than sqrt(.11
2
 + .2

2
) = 0.3 

     therefore not “consistent”, though close 

 

     (better check on that assumed water density) 

 

4. Clearly the best way is to square both sides of the theory equation and 

    then recognize that since T
2
 = (4

2
/k)(M+m), plotting T

2
 vs M will 

    give a straight line of slope 4
2
/k and x-intercept (at T=0) of –m.   

 

    First, note that the data point for M = 250 is significantly off the line,  

    and should be discarded. Then, planning ahead for the negative mass  

    intercept, you get  m = 50gm and k = 1.316 x 10
4
 dynes/cm. 

 

 

    If you do this on a spreadsheet, you will take the numbers off the trend 

    line equation.  But for the satisfaction of seeing the intercept plotted you 

can use the trend line‟s “forecast” option, or simply add a negative “M” data point  (e.g. –

100) with empty T value and force the computer to extrapolate its drawn line. 

 

There are two other interesting options if doing the plot on a spreadsheet.  Both require 

adding a column to allow adding a constant to the M data, for example (MCOLUMN + $E$1) 

to use as the “x” variable.  Then you can do either a power law fit, or a log-log plot, 

adjusting the value in $E$1 for a best trendline fit as measured by the R
2
 fit parameter.  

(Incidentally, you will want to “format data labels” for several decimal places.)  Then, by 

trial and error, you will find m must be between about 46 and 54 grams for  

liter.
cm

liter

in

cm.
in 217

1000

1

1

542
440

3

3
3 























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R
2
  1, and you have the satisfaction of “discovering” that the power is close to the 

theoretical 0.5. 

 

One other “discovery” you can make on the spreadsheet is to let it fit a polynomial to the T 

vs M data.  By the time you get to a 4
th

 power polynomial, the fit as measured by R
2
 is 

excellent.    But look at that fit line.  Obvious nonsense!  

  

 

A FINAL “ANALYSIS” CONCLUSION.  

 

    ALWAYS: 

       Check the answer for appropriate units. 

    Verify that the  estimate is consistent with the “significant figures.” 

 Verify that appropriate theory has been used to guide analysis. 

 

   USUALLY: 

 Compare your answer to “accepted” values, or to other measurements. 

 Attempt to account for a difference in the above, either through  

     carefully estimated uncertainty in the measurements or by  

     analysis of possible systematic errors. 
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INDEX: 

 

Absolute error  ........... 4, 5, 13-15, 23, 32 

Alternative fit ............ 16, 18, 38 

Average  ..................... 5-6, 7, 8-12, 14-16, 29-30, 33, 53 

Best fit  ...................... 17, 18, 29, 31, 32-34, 38-40, 43-46 

Comparison ............... 3, 14, 15, 50, 58 

Conversion of Units ... 48, 49 

Degrees  ..................... 15, 49 

Dependent errors ....... 12, 13 

Dependent variable .... 27, 36 

Error bars ................... 16, 17, 28 

Graphs  ...................... 27-44 

Independent errors  .... 11-12, 20-21 

Independent variable.. 27, 36 

Intercept  .................... 16–18, 28-29, 30, 38, 40, 42, 56 

Mean  ......................... 6-7, 9, 13 (see also Average) 

Percent  ...................... 4, 12, 14  (see also Relative error) 

Propagation  ............... 9,  10 –13, 22 

Random  .................... 6, 7-12, 20, 42 

Relative error  ............ 4, 11, 13, 21 

Slope  ......................... 16-18, 29- 30, 35, 37-38, 40, 42 

Standard Deviation  ... 6-8, 9, 16 

   “         “ of Mean  .... 9 

Statistics .................... 4, 6-10, 19 

Systematic  ................. 5-8, 9-12, 17, 19, 42, 45, 57 

Trend line  ................. 33, 38, 40, 45, 56  (see also Best fit) 

Uncertainty  ............... 3, 4-5, 6, 7-11, 13, 15-17, 20-22, 28, 32, 34, 37, 40, 42, 53, 57 

Units  ......................... 3, 4, 7, 14, 28, 30, 35, 37, 40, 48-49, 54, 57 

 

 


