Absolute Normalizations for 4He Data from 1995 Mainz Run



                             K. A. Aniol, CSULA





Introduction and Summary

Elastic scattering of the electron beam at 675 MeV and 855 MeV is used to
determine the absolute cross sections for the (e,e'p) data taken on the
4He cryo target at Mainz. Spectrometer B was used to determine the elastic
scattering while spectrometer C, used as a luminosity monitor, was held
fixed at 120 deg scattering angle and a central momentum of 340 MeV/c.
Elastic spectra were taken under different beam currents to establish the
local beam heating effect on count rate. Target empty runs were used to
determine the contributions of the cell walls to the spec C spectrum.



Absolute cross sections from previous elastic scattering data were used to
simulate the measurement using the geometry of  the cuts from the espace
analysis. From this simulation( using aeexb) it is possible to obtain a
"luminosity factor" for spec C which correctly accounts for the local beam
heating effects expected at higher beam currents.
The luminosity factors derived in this report relate the total number of
counts in the ee'p coincidence measurement,  N(rn2,AB,ee'p), for run number
rn2 to the total counts seen in spec C (spectrum no. 16), N(rn2,C,inel),
as a monitor with a spectrum cut on variable p18  with the following cuts:

   Summary
    spectrum no. 16 ( in Spectrometer C)
            280<p18<410 MeV/c
        cuts  thtg18-1 -.07 .07
        phtg18-1 -.12 .12
        ytg18-1 -.035 .035
        ecer16-1 200 2000
        angokc thtg18-1.and.phtg18-1
        angokc.and.ecer16-1

    L(rn2,675 ) = 2.42 e33/cm3 *N(rn2,C,inel) +- 1.2%

    L(rn2,855) = 4.32 e33/cm3 *N(rn2,C,inel) +- 2.2%
 
 
 

  Contents
1)     List of 675 MeV and 855 MeV elastic data runs and empty cell runs

2)        spectrum cuts on specB and net true counts in the elastic peak

3)        gas densities from gauges

4)        average cross sections from gauges and extrapolation to zero current
           and comparison of aeexb cross sections with data

5)        spectrum cuts in spec C, raw and true counts in C, comparison to elastic counts in B

6)         definition of luminosity factors

7)          luminosity factors for 675 MeV and 855 MeV data(needs external bremstrahlung)

8)         Inclusion of external bremstrahlung in fits to elastic data-final luminosity factors
 
 

1)                    List of 675 MeV and 855 MeV elastic data and empty cells

675 MeV data
code  run number   proc. events  de.tof   prescale   live time I(uA)   Q (mC) from logbook
1    950709022047                                                              10
specA                   116555        15907.5k    135    0.9892                7.660
specB                   117049        1442.5k      12      0.9737                7.650
specC                   107204         997.5k         9      0.9673                13.045
___________________________________________________
2   950709024337                                                               30
specA                  166036         57497.5k     410  1.18 ?                   28.17
specB                  171859         5237.5k       35     1.15 ?                  28.15
specC                  170662         3542.5k       20     0.9635                 48.12
____________________________________________________
3   950709030327                                                                1
specA                 156815         2177.5k          13   0.9362                 1.015
specB                 160183          207.5k           1     0.7720                  1.015
specC                 152576          187.5k           1     0.8137                  1.760
______________________________________________________
mt675  950626014409                                                           9
specA                                                                                                 13.255
specB                                                                                                  13.240
specC                 176595          1067.5k         6      0.9926                  22.715
**********************************************************
855 MeV data

4   950703031817                                                                 2
specA                19031           762.5k          40    0.9983                     1.365
specB               101456          842.5k           8     0.9634                      1.360
specC                55540           167.5k           3     0.9947                      2.940
_______________________________________________________
5  950703030615                                                                   5
specA                15845            1532.5k      100   1.03 ?                       2.840
specB                86236            1752.5k        20   0.9841                      2.840
specC                30735            312.5k          10   0.9835                      6.150
_________________________________________________________
6  950703025106                                                                  10
specA                20771             3632.5k      200    1.14 ?                     6.915
specB                105047           4192.5k        40   1.0022                      6.920
specC                35481             712.5k          20  0.9960                     14.79
___________________________________________________________
mt855  950626044708
specA                                                                                                   43.84
specB                                                                                                   43.825
specC               88967              4727.5k         53   0.9974                    95.535
 to table of contents

2)  Net true counts for elastic scattering
i)  spectra generated with a cut on phtg10
These net elastic counts come from the allfit analysis including radiative corrections and are corrected for dead time and prescaling.

The cuts on the spectra are as follows:
s8  goodzl = (-.03<reactz10<.01)
s9  goodzr = (.01<reactz10<.03)
s10 gdz1&phi1 = (-.01<reactz10<.01)&(-.01<phtg10<.01)
s11 gdz2&phi1 = (-.02<reactz10<.02)&     "
s12 gdz3&phi1 = (-.03<reactz10<.03)&     "
s13 goodzl&phi1
s14 goodzr&phi1

Where phi1 = (-.01<phtg10<.01)
All these cuts also require -.08<ytg10<.08 .
675 MeV Data

1                run_950709022047
spec num        Ntrue           +- %
s8              134811          1.5
s9              116150          1.7
s10             61485           2.3
s11             124060          1.6
s12             183315          1.4
s13             61688           2.3
s14             60015           2.3

2                  run_950709024337
s8              468189          1.3
s9              421838          1.4
s10             228858          1.9
s11             446350          1.3
s12             469526          1.3
s13             212590          1.9
s14             218585          1.9

3                   run_950709030327
s8              16228           1.3
s9              14324           1.5
s10             7464            2.0
s11             14921           1.4
s12             22412           1.2
s13             7574            2.0
s14             7430            2.0
-----------------------------------------------------------

855 MeV data

4              run_950703031817
s8              86157           1.6
s9              76557           1.7
s10             38225           2.4
s11             75846           1.7
s12             112791          1.4
s13             37443           2.4
s14             37194           2.4

5                  run_950703030615
s8              170613          1.8
s9              153725          1.9
s10             81122           2.6
s11             158322          1.8
s12             232501          1.5
s13             75811           2.7
s14             74873           2.7

6                  run_950703025106
s8              405114          1.6
s9              378100          1.6
s10             192279          2.3
s11             377191          1.6
s12             558919          1.4
s13             178727          2.5
s14              187549          2.4

ii) Spectra generated without a cut on phtg10
all spectra require -8cm<ytg10<8cm, there is no cut on phtg10
spectrum  additional cuts
1            none
2          -.01<reactz10<.01
3          -.02<reactz10<.02
4          -.03<reactz10<.03

675 MeV, true net counts in elastic peak
s#                          run1                      run2                            run3
1               48250 (.84%)              1.7288e6(.66%)             65918(.74%)
2                124280(1.63%)          4.501e5(1.33%)             16839(1.43%)
3               251529(1.14%)            8.958e5(.95%)               33648(1.01%)
4               373222(.91%)              1.333e6(.78%)              50589(0.82%)
855 MeV true net counts in elastic peak
s#                           run4                           run5                             run6
1                  13.1469e5(.92%)          640269(.97%)          1548056(.83%)
2                   82493(1.65%)             172332(1.73%)          407209(1.58%)
3                   164985(1.13%)            337957(1.23%)          805039(1.12%)
4                   245885(.93%)              498218(1.03%)          1196084(.93%)

 to table of contents

3) Gas densities from the gauges.

According to the target log the gauges read the following.

675 MeV elastic
at 00:20 on July 9, I= 0 uA, Ta=20.8K, Tb=20.4K, P=9.5 B
at 09:25 on July 9, I= 0 uA, Ta=20.8K, Tb=20.4K, P=9.0 B

The elastic scattering data were taken between 02:00 and 04:00.
Using the density/pressure/temp table supplied by Dimitri the density at
00:20 was 0.02211 g/cm3.

855 MeV elastic
at 02:20 on July 3, I=0 uA, Ta=21.4K, Tb=20.5K, P= 5.0B
The elastic data were taken between 02:50 and 04:00.
From Dimitri's tables this corresponds to a density of  0.01147 g/cm3
 

 to table of contents

4) Average cross sections from gauges and extrapolation to zero current

Cross sections are calculated for the spectra of section 2ii)
Q is taken as the logbook Foerster reading for specB
density = 0.02211 g/cm3
espace_1  run_950709022047    I=10 uA  675 MeV, Q=7.650mC
espace_2  run_950709024337    I=30 uA  675 MeV, Q=28.15mC
espace_3  run_950709030327    I=1  uA  675 MeV,   Q= 1.015mC(unreliable)

density = 0.01147g/cm3
espace_4  run_950703031817    I=2 uA   855 MeV, Q=13.60mC
espace_5  run_950703030615    I=5 uA   855 MeV, Q= 28.40mC
espace_6  run_950703025106    I=10 uA  855 MeV,Q=6.920mC
 

Average Elastic Cross Sections = (true counts)/(.0056sR)/Nelec/Ntarg(cm2)

675 MeV data
   units cm2/sR * e-32
s#     espace_1       espace_2       espace_3
1      6.78(.06)      6.60(.04)      6.98(.05)
2      6.99(.12)      6.87(.09)      7.13(.09)
3      7.07(.10)      6.85(.07)      7.13(.06)
4      7.00(.07)      6.79(.05)      7.14(.05)
avg   7.02(.11)      6.83 (.08)     7.13(.07)   , avg based on s2,s3,s4
note - For 1995 the 1 uA current integration has "large" uncertainties.

855 MeV data
  units cm2/sr * e-31
s#     espace_4       espace_5       espace_6
1      4.79(.05)      4.67(.05)      4.63(.05)
2      5.03(.08)      5.03(.09)      4.88(.08)
3      5.03(.06)      4.93(.06)      4.82(.06)
4      5.00(.05)      4.85(.05)      4.77(.05)
avg   5.02(.07)      4.92(.07)      4.84(.05)  , avg based on s2,s3,s4

The values of the cross sections extrapolated to I= 0 uA are,

675Mev sigma elastic =  7.14(.05) e-32 cm2/sr
aeexb simulation gives average cross section =  8.16 e-32 cm2/sr

855 MeV sigma elastic = 5.05(.04) e-31 cm2/sr
aeexb simulation gives average cross section = 5.09 e-31 cm2/sr

The simulation and data agree at 855 MeV to within 1% but the discrepancy at 675 MeV is data/simulation = 7.14/8.16 = 0.875
 

 to table of contents

5)  Spec C  counts at 675 and 855 MeV and comparison to elastic counts in Spec B

675 MeV data for spec C and the empty run trying
different cuts to see which gives the most consistent ratios for
spec B elastic and spec C. Note that the counts are for 280<p18<410.

cuts  thtg18-1 -.07 .07
      phtg18-1 -.12 .12
      ytg18-1 -.035 .035
      ecer16-1 200 2000
      angokc thtg18-1.and.phtg18-1

spectra of variable p18
s#    cuts
13    none
14    angokc
15    ecer16-1
16    angokc.and.ecer16-1
17    angokc.and.ecer16-1.and.ytg18-1

For any given spectrum the true counts T for N raw full counts and
B raw empty counts is,

      T = (1/live time)*(ps*N) - (Qfull/Qmt)(1/live time_mt)*(ps_mt*B)

      T = a(ps*N) - b(ps_mt*B),  (dt)^2 = a^2*(ps*N) + b^2*(ps_mt*B)
-----------------------------------------------------------------
Raw Counts in p18 between 280 MeV/c and 410 MeV/c, 675 MeV
s#     N#3   N#2       N#1      mt675

13   51187   58190  36645  26122
14   27948   38815  24262  6316
15   8253    12544  7837   433
16   7295    11187  7054   234
17   6666    10282  6523   110
-----------------------------------------------------------
Net True Counts in Spec C , 280<p18<410 with mt subtraction, 675 MeV

s#            T#1+-%                   T#2+- %                      T#3+- %
13      249931(.25)                 872947(.14)             50806(.55)
14       203731(.26)                724723(.14)              31414(.65)
15      71409(.51)                    254832(.26)             9939(1.1)
16       64817(.54)                   229215(.28)             8854(1.2)
17       60308(.56)                   212020(.30)              8138(1.2)
-------------------------------------------------------------
Comparison of spectrum 4 spec B(true elastic counts)from section 2ii) to spec c
                                    ratio(+- %)  675 MeV
s#               #1(10uA)               #2(30uA)                   #3(1uA)
13               1.49(.94)                1.53(.80)                      1.0(1.0)
14                1.83(.95)                1.84(.80)                      1.61(1.0)
15                5.23(1.0)               5.23(.82)                      5.09(1.4)
16                5.76(1.1)               5.82(.83)                       5.71(1.4)
17                6.19(1.1)               6.29(.83)                       6.22(1.4)
----------------------------------------------------------------------
 

855 MeV specC data with same cuts as 675 MeV

raw counts for 280<p18<410 MeV/c, 855 MeV

s#                    4                         5                     6                      mt855

13               21102                 12027             13899                 13335
14                13057                 8092               9522                   3324
15                1488                   906                 916                     105
16                 1238                  799                 916                      41
17                1111                   708                 840                       14
----------------------------------------------------------------------------
Net true counts for specC, 855 MeV

s#                  4                          5                      6

13           41654(.61)           76368(.46)         167208(.32)
14            33898(.59)          70831(.41)         163315(.28)
15          4315(1.7)               8850(1.1)          20043(.72)
16           3666(1.8)             7983(1.2)            18050(.8)
17          3328(1.9)               7150(1.3)           16750(.8)
----------------------------------------------------------------------------
ratios of specB elastic s#4 from 2ii) to true specC, 855 MeV, error in %

s#                  4                            5                       6

13               5.90(1.1)               6.52(1.1)            7.15(1.0)
14                7.25(1.1)               7.03(1.1)            7.32(1.0)
15               56.99(1.9)             56.3(1.5)            59.7(1.2)
16               67.07(2.0)              62.4(1.6)           66.3(1.2)
17               73.9(2.0)                 69.7(1.6)           71.4(1.2)
------------------------------------------------------------------------------

 to table of contents
 

6) Definition of "luminosity factors"

We want to relate the counts seen in spec C, the luminosity monitor, to an absolute cross section for the (e,e'p) data. The elastic scattering information is used to make this possible. Consider elastic scattering from the extended target .

J(x,y,t) is the electron current density, assumed independent of z, the beam direction,

r(x,y,t,J) is the gas density in a volume dxdydz at point (x,y,z). The density depends on the current density. If s is the differential cross section for scattering into solid angle dW
then the number of counts dN  in a time dt is

                        dN = (rdxdydz)/(dxdy)*(Jdxdydt)*(sdW).

The solid angle depends on the position along the z axis, but we will ignore the dependence of the solid angle on the transverse coordinates x and y because the wobbled spot is typically 10 to 20 times smaller than the length of the target along z. The total counts N for the course of the measurement is

                            N =( S r(x,y,t)J(x,y,t)dxdydt ) S dz( S s dW)

We can call the integral over density and electron current L(rn) and the integral of the cross section weighted by dz  I(B,el), for the case of run number, rn, where spec B measures elastic scattering, for example. The integral L is the same for both spectrometers C and B and has the units 1/cm3. So for run number rn we can write

N(rn,B,el) = L(rn) I(B,el)  and N(rn,C,inel) = L(rn)I(C,inel)

For the case of (e,e'p) the counts N(rn,AB,ee'p) is

N(rn,AB,ee'p) = L(rn) I(AB,ee'p), where

I(AB,ee'p) =   S dz ( Ss(We,Wp,Ee) dWedWpdEe ) .

The integral over the elastic scattering in B can be obtained from Marty's aeexb results for the average cross sections, namely

        s(aeexb,B,DW,zB) =  I(B,el)/(DW* zB), or  I(B,el) = s(aeexb)*(DW* zB) .
Where DW = .0056 sr, for example, and zB = 6 cm, for example.

Then from spec B we can deduce the factor L(rn),  L(rn)=N(rn,B,el)/I(B,el).
Knowing L(rn) for the elastic run we then can determine I(C,inel).

I(C,inel) = N(rn,C,inel)/N(rn,B,el) * I(B,el).
Next, suppose we have two runs, rn1 = elastic and rn2 = ee'p then for these two runs we write,

          N(rn2,C,inel) = L(rn2)*I(C,inel)
           N(rn1,C,inel)=L(rn1)*I(C,inel)
and dividing we can solve for L(rn2)

L(rn2) = L(rn1)*(N(rn2,C,inel)/N(rn1,C,inel))

L(rn2) =  (N(rn1,B,el)/I(B,el)) * (N(rn2,C,inel)/N(rn1,C,inel))

L(rn2) = (N(rn1,B,el)/s(aeexb)*(DW*zB) )*(N(rn2,C,inel)/N(rn1,C,inel))

and from this factor we can obtain the weighted ee'p cross section integral.

I(AB,ee'p) =   Sdz ( Ss(We,Wp,Ee) dWedWpdEe )  = N(rn2,AB,ee'p)/L(rn2)

These last two equations in bold are what we need to get the ee'p cross sections. Once we have chosen a set of elastic data the factor L(rn2) is simply proportional to the number of counts seen by spec C, N(rn2,C,inel).

 to table of contents

7) Luminosity factors for 675 and 855 MeV(This is modified in section 8 for
         external bremstrahlung)

From the discussion in 6) we can write the L(rn2) factor as

L(rn2) = { (N(rn1,B,el)/N(rn1,C,inel))/(s(aeexb)*(DW* zB) )}*N(rn2,C,inel)

or

L(rn2) = F(rn1)*N(rn2,C,inel),

 F(rn1) = (N(rn1,B,el)/N(rn1,C,inel))/(s(aeexb)*(DW* zB) )

We will take
DW = 0.0056 sr, and zB = 6cm,  s(aeexb,675)= 8.168 e-32 cm2/sr ,
s(aeexb,855) = 5.091 e-31 cm2/sr

For the ratios of B elastic to C inelastic we will use s#4 from 2ii) and s#16 from 5).

For 675 MeV this ratio of counts is very stable and the weighted average is 5.77(1.2%).
For 855 MeV this ratio is more variable, but an uncertainty of 2.2% would bring all the ratios at the three currents to within 2 error bars of the weighted average, i.e, 65.3(2.2%).

Putting all this together we conclude that the L(rn2) factors are
 
 

at 675 MeV
    F(rn2)=5.77(1.2%)/(8.168e-32cm2/sr)/(.0056 sr)/(6cm) = 2.10 e33/cm3 +- 1.2%

    L(rn2,675 ) = 2.10 e33/cm3 *N(rn2,C,inel) +- 1.2%(see section 8)
 

at 855 MeV
   F(rn2) = 65.3(2.2%)/(5.091e-31cm2/sr)/(.0056 sr)/(6cm) =  3.82 e33/cm3 +- 2.2%

   L(rn2,855) = 3.82 e33/cm3 *N(rn2,C,inel) +- 2.2%(see section 8)

 to table of contents

8)         Inclusion of External Bremstrahlung in fits to the Elastic Spectra

The effect of the inclusion of the walls of the target cell as sources of external bremstrahlung is to increase the deduced number of true counts in the elastic spectra. This is done in allfit by changing the histogram file header information to include a second isotope(iron) along the lines suggested by Richard Florizone in his thesis. This means that the iron seen by the beam is imagined to be uniformly distributed throughout the target gas. The cross section for helium elastic scattering scales as 1/density for the range investigated (9 to 13 mg/cm3 at 855 MeV and 20 to 24 mg/cm3 at 675 MeV). This means that the number of counts deduced by allfit to be in the elastic peak can simply be extracted from a given fitting run with a given density. The densities I chose to fit were 11.85 mg/cm3 at 855 MeV and 22.11 mg/cm3 at 675 MeV.

855MeV
isotope2 = Fe, at 165um and 7.86g/cm3 -> d2 = 129.69 mg/cm2,A2 = 55.847, z2 = 26
isotope1 = 4He, 8cm and 11.85 mg/cm3 -> d1= 94.8 mg/cm2

atomic fraction 4He = 0.911
atomic fraction Fe = .089
effective density = (94.8 + 129.69)/8  mg/cm3    = 28.06 mg/cm3

for run#6, spectrum 8 (+- 3cm on ztg10), N(Fe,allfit) = 32007

675 MeV
isotope2  same as for 855 MeV
isotope1 4He, 8cm and 22.11 mg/cm3-> d1 = 176.88 mg/cm2
atomic fraction 4He = 0.9501
atomic fraction Fe = 0.04989
effective density = (176.88 + 129.69)/8 = 38.32 mg/cm3

for run#1, spectrum 4(+- 3cm on ztg10), N(Fe,allfit) = 32695

        True counts in the elastic peak

Using the prescale and dead time information the true counts in the elastic peak are

                              675 MeV                                  855 MeV
                           run 1,  spectrum 4                     run 6, spectrum 8
with iron                 402805                                     1277399

previous
fit without Fe          373222                                     1196084

Fe/(no Fe)                1.079                                        1.068
 

                    Cross Sections using the gauge densities

The solid angle assumed is for  -.062< thtg10<.07,  DW = 0.00528 sr.
Target length = 6cm

                                       675 MeV                     855 MeV
density                          22.11 mg/cm3               11.47 mg/cm3
charge(mC)                   7.650                            6.920
s(10uA)                        8.00 e-32 cm2/sr           4.93 e-31 cm2/sr
s(0uA)                          8.16(.06)e-32 cm2/sr     5.21(.05) e-31 cm2/sr
s(aeexb)                        8.16 e-32 cm2/sr           5.091 e-31 cm2/sr

           Luminosity Factors

 Luminosity factors are calculated as in 7) except the true elastic counts are those with the Fe external bremstrahlung included and the solid angle for B is assumed to be .00528 sr.

True counts in spectrum #4 for all runs and the monitor(s#16)

run#              Ntrue(B_s4)            Ntrue(C_s16)            Ntrue(B)/Ntrue(C)
675 MeV
1                  402805(.93%)          64187(.54%)                  6.21(1.06%)
2                   1439845(.82%)        229215(.28%)            6.28(.87%)
3                  55472(.82%)             8854(1.2%)                6.27(1.45%)
                                                weighted average            6.25(1.24%)
855 MeV
4                  263243(.93%)          3666(1.8%)                   71.81(2.03%)
5                  531876(1.03%)         7983(1.2%)                   66.63(1.58%)
6                  1277399(.93%)         18050(.8%)                   70.77(1.23%)
                                                weighted average             69.68(2.2%)

F(rn1,675MeV) = 6.25(1.2%)/(8.168e-32)/(.00528)/6 = 2.415e33
F(rn1,855MeV) = 69.68(2.2%)/(5.091e-31)/(.00528)/6 = 4.322e33

  L(rn2,675 MeV) = 2.415(+- 1.2%) e33/cm3 * N(rn2,C,inel)

 L(rn2,855 MeV) = 4.322(+- 2.2%) e33/cm3 * N(rn2,C,inel)

 to table of contents
 back to beginning