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The recent isotopic shift measurements for the chain of neon isotopes have revealed a rich structural
information and very interesting anomalous behavior of the charge radii with neutron number. Here we study
the systematics of the charge radii of neon isotopes within the relativistic mean field(RMF) framework. The
pairing correlations are incorporated by simple constant gap approximation as well as self-consistently through
the Bogoliubov transforms employing in the pairing channel the finite range Gogny-D1S or the density
dependent zero range interaction. It is observed that the RMF in the axially deformed oscillator basis success-
fully explains the observed anomaly in the charge radii of neon isotopes.
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The recent isotopic shift measurements for neon isotopes
[1] reveal anomalous behavior and rich structure. The mini-
mum charge radius is observed for24Ne and it rises with the
addition or removal of neutrons from24Ne. The maximum
radius occurs at28Ne s17Ned for neutron rich(deficient) iso-
topes. The neutron rich as well as deficient neon isotopes
indicate a small odd-even staggering in charge radii. Further,
there is a sudden drop and rise in the charge radius while
moving from 19Ne to 17Ne. Therefore, it is worthwhile to
investigate these observations theoretically. The relativistic
mean field(RMF) has been successful in describing the ob-
served anomalous behavior in the isotopic shift measure-
ments for several nuclei in the medium(Kr, Sr, etc.) and the
heavy mass regions(Rb, Gd, etc.). Therefore, it is interesting
to check whether RMF will be able to describe this interest-
ing and unusual behavior for the neon isotopes.

RMF describes the Dirac spinor nucleons interacting via
the electromagnetic(e.m.) and meson fields. The mesons
considered are the scalar sigmassd, vector omegasvd, and
isovector vector rhosrd. The corresponding Lagrangian con-
sists of free baryon and meson terms and the interaction
terms. Many versions of such a Lagrangian are available. We
use the standard nonlinearss,v,rd interaction Lagrangian
developed for and widely used in the nuclear structure appli-
cations[2,3]. The variational principle yields the equations
of motion. In the mean field approximation, replacing the
fields by their expectation values, one ends up with a set of
coupled equations; namely, the Dirac equation with potential
terms involving meson and e.m. fields describing the nucleon
dynamics and a set of Klein-Gordon-type equations with
sources involving nucleonic currents and densities, for me-
sons and the photon. This set of equations, known as RMF
equations, is to be solved self-consistently.

The pairing correlations, essential for the description of
open shell nuclei, can be incorporated either by simple BCS
prescription, or self-consistently through the Bogoliubov
transformations. The latter lead on to the relativistic Hartree
Bogoliubov(RHB) equations. The RHB equations[3,4] read
as
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Here,l is the Lagrange multiplier,Ek is the quasiparticle
energy, Uk and Vk are properly normalized four-
dimensional Dirac spinors, andhD is the usual Dirac
Hamiltonianf3g:
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Here M is the nucleon mass ands, vo, r3
o, andAo are the

meson and e.m. fields. These fields are to be determined
self-consistently from the Klein-GordonsKGd equations
f3g; with sourcessnuclear currents and densitiesd involv-
ing superspinorsfUsVdg f3,4g.

The RHB equations have two distinct parts: the self-
consistent fieldshDd that describes the long range particle-

hole correlations and the pairing fieldsD̂d that accounts for
the correlations in the particle-particlesppd channel. The

pairing field D̂ is expressed in terms of the matrix elements
of the two-body nuclear potentialVpp in the pp-channel and
the pairing tensor involving the superspinorssU,Vd. In the

case of the constant gap,D̂as;Dd becomes diagonal and de-
couples into a set of 232 diagonal matrices resulting in the
BCS-type expressions for the occupation probabilities. As a
result, the RHB equations[Eq. (1)] reduce to the RMF equa-
tions with constant gap.

Reliable and satisfactory derivation ofVpp is not yet avail-
able in RMF(see Refs.[3,5]). Therefore, in practical calcu-
lations, it is customary to adopt a phenomenological ap-
proach while solving the RHB equations. Usually, the finite
range Gogny-D1S[6,7] interaction,
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ffactors mi, Wi, Bi, Hi, and Mi si =1,2d are parameters of
the interactiong or the density dependent, effective two-*Electronic address: yogy@phy.iitb.ac.in
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body zero range interactionf8g,

Vsr 1, r 2d = Vodsr 1 − r 2d
1

4
s1 − s1s2dS1 −

rsrd
ro

D s4d

fVo is the interaction strength with cutoff energy about
300 MeVf8g andro s=0.152 fm−3 f8gd is the nuclear matter
densityg are used for this purpose. In the latter case, the
strengthVo is fixed so as to reproduce the pairing energy
f8g obtained from the finite range Gogny D1S interaction.

The explicit calculations require(a) parameters appearing
in the Lagrangian and(b) Vpp or the experimental gap pa-
rametersD (along with a cutoff, 2"v), as input information.
Several sets of the parameters appearing in the Lagrangian
are available in the literature[3,9–11]. In the present work,
we use one of the recent and the most successful Lagrangian
parameter set, NL3[9].

The RMF/RHB calculations have been carried out, using
different prescriptions. Explicitly, we use the following.

(1) We use the oscillator basis for the solution of(a) the
RMF equations, with frozen gap approximation(correspond-
ing results are labeled by SPH); and (b) the RHB equations
using the finite range Gogny-D1S interaction[results are
marked as RHB(ob)].

(2) The RHB equations are also solved on a discretized
mesh in the coordinate space with a box size of 25 fm, using
the effective zero range density dependent two-body interac-
tion [8] [these results are denoted by RHB(c)].

To ascertain the effect of deformation we have also solved
the RMF equations with the constant gap approximation in
the axially deformed oscillator basis(the label DEF denotes
these results). The constant gaps(independent of the particle
level) are fixed so that the SPH pairing energy is almost
same as the corresponding RHB(ob) pairing energy. The
same gaps are used in the DEF calculations. For odd-A nu-
clei, the last odd nucleon does not have a partner to occupy
its time reversed state. As a result, the mean field ground
state wave function does not have time reversal symmetry.
For this purpose, we follow the well tested tagged Hartree-
Fock procedure, frequently used in the nonrelativistic calcu-
lations.

We now present and discuss the results of our explicit
numerical calculations for the chain of neon isotopes. The
differences between the calculated binding energies and the
corresponding experimental values[12] are plotted in Fig.
1(a).

Clearly, all the prescriptions for solving the RMF/RHB
equations reproduce the experiment rather well. However,
the inclusion of deformation brings the calculated binding
energies closer to the experiment. There is a discrepancy of
around 4 MeV in the case of20Ne. This could be due to the
possible quartet structure and/or due to then-p pairing.

The calculated quadrupole deformation parameterssbd
along with the corresponding Möller-Nix(MN) values[13]
are shown in Fig. 1(b). The DEF results and MN results are
very similar. The graph reveals that except for18,26,30Ne (cor-
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FIG. 1. (a) The binding energy
differences (between the theory
and the corresponding experiment
[12]) as a function of the third
component of isospin.(b) The cal-
culated(DEF) and the correspond-
ing Möller-Nix (MN) [13]quadru-
pole deformation parameterssbd.
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FIG. 2. The calculated[DEF
and RHB(c)] single sSnd and two
neutron sS2nd separation energies
for the neon isotopes along with
the corresponding experiment
[12].
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responding to neutron numbers 8, 16, and 20, respectively),
all the other neon isotopes are deformed;19−23Ne have strong
prolate deformation. The shape transition is observed be-
tween 23Ne and24Ne. The higher neon isotopes have rela-
tively milder deformations. It turns out that except for
20−22,28Ne, all the neon isotopes have very small or zero neu-
tron pairing energies. This reflects that the deformation ef-
fects are largely due to the protons.

The RHB (c) and RHB (ob) results are almost identical
and further the SPH results are similar to that of RHB(c).
Therefore, we shall present and discuss the RHB(c) and
DEF results only in what follows.

The variation of single and two neutron separation ener-
gies(Sn andS2n) is shown in Fig. 2, with the third component
of isospin TZ, intimately related to the neutron number
N fTZ=sN−10d/2g.

It is seen from Fig. 2 that the odd-even staggering inSn is
nicely reproduced by both RHB(c) and DEF. The inclusion
of deformation effects is clearly important for the correct
description of separation energies. The two neutron separa-
tion energies are also well reproduced. Differences do exist
between the theory and the corresponding experiment at a
finer level.

The calculated isotopic shift[dkrc
2l, with respect to

20Ne sTZd=0] values[RHB (c) and DEF] along with the cor-
responding experimental results[1] is presented in Fig. 3(a).
The DEF calculations are in excellent agreement with the
experiment. The experimental trend is beautifully repro-
duced. In Fig. 3(b), we plot the calculated charge radii along

with the corresponding values extracted from the measured
isotopic shifts. The charge radius for the reference nucleus
s20Ned has been taken from Ref.[14]. The calculations do
reproduce the experiment. It is interesting to note that the
RHB (c) underestimates the charge radii. The deformation
effects are found to be crucial in order to describe the experi-
ment correctly.

It is to be pointed out that some theoretical(both nonrel-
ativistic and relativistic) calculations are available for this
chain [15–18]. All of these have some deficiencies. The re-
sults of the nonrelativistic Hartree-Fock1BCS calculations
using different types of Skyrme interactions reported in Refs.
[16,17], though qualitatively similar, do differ among them-
selves at several places. The relativistic RMF1BCS calcula-
tions have been reported[15] for even-even neon isotopes
only. The authors[15] use the Lagrangian parameter set NL3
and employ the Möller-Nix prescription for the pairing gaps
[19]. The results[18] of the Skyrme Hartree-Fock1BCS and
the RMF1BCS calculations for some neon isotopes have
been quoted in Ref.[1].

Here, we also use the Lagrangian parameter set NL3, but
fix the pairing gaps to be used in the deformed(DEF) calcu-
lations by reproducing the pairing energy obtained in RHB
(ob) using Gogny-D1S interaction inpp channel. Though our
results qualitatively agree with those of earlier calculations
[15], however there are appreciable differences at several
places. For example, the calculated deformation parameterb
for 20Ne listed in Ref.[15] is much smaller as compared to
that obtained in the Skyrme Hartree-Fock1BCS calculations
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FIG. 3. The isotopic shifts(a)
and the corresponding charge radii
(b) for neon isotopes. The calcu-
lated values along with the corre-
sponding experimental values
[1]are shown. See text for more
details.
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[16,17]. The deformation parameterb for 20Ne obtained in
the present work closely agrees with that of the nonrelativ-
istic calculations[16,17] as well as with that of Möller and
Nix [13]. Further, the RMF1BCS of Ref.[15] predict pro-
late shape for24Ne, while all the rest(nonrelativistic as well
as the present calculations) yield oblate solution, which is
consistent with that of Möller and Nix[13].

Overall, the results of the present calculations are in better
agreement with the experiment as compared to those of
RMF1BCS [15]. This indicates that proper choice of pairing
gaps is important, which is expected.

The calculated nuclear skin thicknesssrn−rpd for the neon
isotopes is plotted as a function ofTZ in Fig. 4(a). For 20Ne,
the skin is nearly zero. For the neutron deficient nuclei, the
skin is negative, whereas for the neutron rich nuclei, the skin
is positive as expected. The skin thickness bears nearly a
linear relation with the isospin projectionTZ. Next we plot
the skin thickness as a function of differences between the
observed single neutron and proton separation energiessSn
−Spd. A strong negative correlation is evident. To quantify the
correlation, we calculate the correlation coefficientC defined
as [20]

C =
Covsx, yd

sx · sy
, s5d

where the covariance “Cov” is defined as

Covsx, yd =
1

N − 1o
j

sxj − x̄dsyj − ȳd, s6d

the variance is given by

sx
2 =

1

N − 1o
j

sxj − x̄d2, s7d

sy
2 =

1

N − 1o
j

syj − ȳd2. s8d

The correlation coefficientC turns out to be −0.98 for
DEF and −0.97 for RHB(c), quantifying the above state-
ment.

The interaction cross sections for the neon isotopes as
projectiles incident on12C target at 950AMeV energy[21]
have been measured. Here, we use the calculated[RHB (c)
and DEF] densities within the Glauber Model[22] to calcu-
late the total interaction cross section. The total interaction
cross section according to the Glauber model is given by

sI = 2p E
0

`

bdbh1 − Tsbdj, s9d

whereb is the impact parameter andTsbd is the transpar-
ency function. The calculation ofTsbd requires the neutron
and proton densities of the target and the projectile along
with the effective nucleon-nucleon cross sections. The
calculatedsneutron and protond RHB scd and DEFsrenor-
malized projectedL=0 componentd densities are used as
projectile densities whereas the targets12Cd density is
taken from the earlier workf23g. The calculated interac-
tion cross sections are displayed in Fig. 5 along with the
corresponding experimental valuesf21g. Both the calcula-
tions fRHB scd and DEFg reproduce the experimental
trend well. The DEF results are relatively in better agree-
ment with the experiment.

It is found that the inclusion of deformation effects is
crucial for the correct description of the binding energies and
also for the observed anomalous isotopic shifts in neon iso-
topes.
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