
Kinematics
All kinematics problems rely on the conservation of energy and momentum.
You should not worry about the nature of the forces involved in the reactions!

Non Relativistic Kinematics
Lab to Center of Mass transformation
Consider the reaction

ma +mb → mc +md. (1)

The lab coordinates of particles a and b are related to the center of mass coor-
dinates, see Figure 1, by ~Ra = ~R+ ~ra and ~Rb = ~R+ ~rb. Hence
ma

~Ra = ma
~R+ma ~ra, and, mb

~Rb = mb
~R+mb

~rb. Take the time derivative and
add these two equations together.

ma
~V a+mb

~V b = ma
~V +ma ~va+mb

~V +mb
~vb. (2)

In the center of mass the total momentum is zero, so

ma
~V a+mb

~V b = (ma +mb)~V . (3)

First evaluate this in the center of mass(CM). Let ~pa, ~pb, ~pc, ~pd be the CM mo-

menta so that the magnitudes of ~pa, ~pb are equal and set that to pi. In the final
state set the magnitudes of ~pc, ~pd to pf. The conservation of momentum is sat-
isfied in the CM in the initial and final states because the sum of the momenta
is zero both before and after. The conservation of energy requires

ta + tb +ma +mb = tc + td +mc +md (4)

ta + tb = −Q+ tc + td (5)

Q = ma +mb −mc −md (6)

or expressing the kinetic energies non relativistically

pi2/(2ma) + pi2/(2mb) = −Q+ pf2/(2mc) + pf2/(2md). (7)

Now consider the relationship between the laboratory momenta of a and b and
the CM momenta of a and b. Pa = ma

~V + ~pa, Pb = mb
~V + ~pb or in terms of

the CM momentum P = (ma +mb)~V = M~V .

Pa = (ma/M)~P + ~pa, Pb = (mb/M)~P + ~pb.

Hence the momentum |pa| = |pb| = |pi| in the CM is given by

pi2 = pa2 = (mb/M)2Pa2 + (ma/M)2Pb2 − (2mamb/M
2) ~Pa · ~Pb. (8)

From this relation we can link the kinetic energies in the lab to the kinetic en-
ergies in the CM because Ta = Pa2/(2ma). If we specialize to the case that b
is stationary in the lab then Pb = 0 and then in the CM
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pi2/(2ma) + pi2/(2mb) = (mb/M)2Pa2(1/ma + 1/mb)/2 = −Q+ ta + tb.

2ma(mb/M)2Ta(M/(mamb)/2 = −Q+ ta + tb.

Ta = (ma +mb)/mb(−Q+ ta + tb). (9)

If Q is negative then we can have ta = tb = 0 and still satisfy pf = pa = pb = 0.
The minimum lab energy, non relativistically, to cause the reaction occurs when
the kinetic energies of c and d are zero in the CM.

Tmina = −Q(1 +ma/mb) (10)

In this case since pf = 0 the particles c and d do not separate from each other
in the CM and likewise they stay stuck together in the lab.

Figure 1: Two particles of masses ma and mb are at displacements ~Ra and ~Rb
from the lab origin of coordinates. The center of mass is ~R. The locations of a
and b with respect to the center of mass are ~ra and ~rb.

Particle momenta versus scattering angle, non relativistic treat-
ment
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Continuing with the assumption that particle b is stationary and that particle
c is detected at an angle θc in the lab with respect to the initial momentum ~Pa
we want to determine the momentum of particle c. We use the non relativistic
expression for kinetic energy in equation 4

Ta +Q = Pc2/(2mc) + Pd2/(2md) (11)

Conservation of momentum requires that

~Pd = ~Pa− ~Pc (12)

Substitute equation 12 into the energy equation 11.

Ta +Q = Pc2/(2mc) + (Pa2 + Pc2 − 2PaPccos(θc))/(2md) (13)

Equation 13 is quadratic in the lab momentum Pc. We solve this equation and
obtain:

Pc = β ±
√
α+ β2 (14)

Where β = 2mcPacos(θc)/(mc +md)

and

α = 2(Ta(1−ma/md) +Q)mcmd/(mc +md).

Conservation of momentum and energy now allows us to get ~Pd as well.

Relativistic Kinematics
Lab to Center of Mass transformation
We again consider the reaction in equation 1. In the case of relativistic kinemat-
ics we have a different expression for the kinetic energy term, i.e., the correct
expression. We still can write

E = T +m, but also note that

E =
√
p2 +m2 (15)

In this case we form the 4-momentum, pµ = (E, ~p) and use the Lorentz invariant
contraction

S = pµpµ = E2 − p2 (16)

which gives the same result in the lab or in the center of mass. The total
momentum in the center of mass is, by definition, zero. Hence

S = E2
lab − P 2

lab = E2
cm (17)
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For particle b stationary we have Elab = ma +mb + Ta, and ~Plab = ~Pa. In the
center of mass we have

Ecm = ec+ ed =
√
m2
c + pc2 +

√
m2
d + pd2

However, ~pc+ ~pd = 0. Call the magnitude of pc and pd pf so then

Ecm = ec+ ed =
√
m2
c + pf2 +

√
m2
d + pf2

Since we know S in the lab from equation 17 we have

S = m2
c +m2

d + 2pf2 + 2
√
m2
c + pf2

√
m2
d + pf2 (18)

Let α = S − (m2
c +m2

d) then

α− 2pf2 = 2
√
m2
c + pf2

√
m2
d + pf2 (19)

We square both sides of this equation to get

α2 + 4pf4 − 4αpf2 = 4(m2
c + pf2)(m2

d + pf2) (20)

The terms 4pf4 cancel and we are again left with a quadratic equation in pf2.

α2 − 4m2
cm

2
d = 4pf2(mc2 +md2 + α) (21)

The magnitude of the momentum of particles b and d in the center of mass is

pf2 = (α2 − 4m2
cm

2
d)/(4(m2

c +m2
d + α)) (22)

When pf2 = 0 this is the case of the minimum energy required in the center
of mass to produce the reaction so α = 2mcmd. Using Ea = Ta + ma and
evaluating α

α = (Ea+mb)
2−Pa2−(m2

c+m2
d) = Ea2+2Eamb+m

2
b−Pa2−(m2

c+m2
d) (23)

α = Pa2 +m2
a + 2(Ta+ma)mb +m2

b − Pa2 − (m2
c +m2

d) (24)

α = m2
a +m2

b + 2mamb + 2Tamb − (m2
c +m2

d) (25)

α = (ma +mb)
2 + 2Tamb − (mc2 +m2

d) (26)

So then substituing for α

(ma +mb)
2 + 2Tamb − (m2

c +m2
d) = 2mcmd (27)

2Tamb = (mc +md)
2 − (ma +mb)

2 (28)

Using the fact that (mc +md) = (ma +mb)−Q and solving for Ta

Tamin = −Q(ma +mb)/mb +Q2/(2mb) (29)
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Comparing the relativisitic value for Tamin, equation 29, with the nonrela-
tivistic value, equation 10, we see the correction to the nonrelativistic value is,
Q2/(2mb).

Particle momenta versus scattering angle, relativistic treatment

We use the conservation laws, ~Pa = ~Pc+ ~Pd and Ea+ Eb = Ec+ Ed. So
~Pc = ~Pa− ~Pd and with Ei =

√
Pa2 +m2

a +mb =
√
Pc2 +m2

c +
√
Pd2 +m2

d

we can make the substitution and rearrange the equation

Ei −
√
Pc2 +m2

c =
√
Pd2 +m2

d =
√
m2
d + Pa2 + Pc2 − 2PaPccos(θc).

Square both sides and make the substitution α = E2
i +m2

c −m2
d − Pa2

α+ 2PaPccos(θc) = 2Ei
√
m2
c + Pc2 (30)

Squaring again we solve the quadratic equation to obtain Pc as a function of
scattering angle θc.

Pc = β ±
√
γ + β2 (31)

With β = αPacos(θc)/(2(E2
i − Pa2cos2(θc)))

and γ = (α2 − 4E2
im

2
c)/(4(E2

i − Pa2cos2(θc)))
and Pc must be greater or equal to zero.

Using the Lorentz transformation to the Center of Mass to obtain
the Q value
Suppose the momentum of particle a, ~Pa = Paẑ, is along the z axis. The four
momentum of particles a and b can be transformed to another inertial reference
frame, O’ moving along the z axis with velocity β, by the Lorentz transforma-
tion. Here Pµa = (Ea, ~Pa), ~Pa = (0, 0, Pa) so

E′
a = γ(Ea − βPaz) (32)

p′az = γ(Paz − βEa) (33)

p′ax = 0 (34)

p′ay = 0 (35)

Here γ = 1/
√

1− β2. If particle b is stationary in the lab then ~Pb = (0, 0, 0) so
then

E′
b = γ(Eb − βPbz) = γEb (36)

p′bz = γ(Pbz − βEb) = −γβEb (37)

If we want the frame O’ to be the Center of Mass we recall that in the Center
of Mass the total momentum is zero.

p′az + p′bz = 0 = γ(Paz − βEa − βEb) (38)
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This equation allows us to get the Center of Mass velocity β

β = Paz/(Ea + Eb) (39)

If we have the Center of Mass velocity and in the lab we measure a particle
c with momentum ~Pc = (Pcx, Pcy, Pcz) then we can obtain the momentum of
particle c in the Center of Mass using the Lorentz transformation, equation 33.

p′c
2 = γ2(Pcz − βEc)2 + P 2

cx + P 2
cy (40)

In the Center of Mass p′d
2 = p′c

2 and from the conservation of energy we have a
relationship for md.

E′
i =

√
p′c

2 +m2
c +

√
p′d

2 +m2
d (41)

Where
E′
i
2 = (Ea + Eb)

2 − P 2
a = s = pµp

µ (42)

We have another way of writing the equation for md using

E′
c = γ(Ec − βPcz) (43)

Then
m2
d = E′

i
2 − 2E′

iE
′
c +m2

c (44)

The center of mass velocity for a multi particle system
Suppose we have N particles in a system. The total laboratory momentum of
these particles is given by

~P =

N∑
i=1

~Pi (45)

In Figure 2 a particular vector ~Pi makes an angle θ with respect to the total
momentum. The plane in this figure is perpendicular to ~P . The component
of ~Pi which is in this plane is ~Pisin(θi) and the component of ~Pi along ~P is
~Picos(θi) thus

~P ·
∑

~Pi = P 2 = P
∑

Picos(θi) (46)

so P =
∑N
i=1 Picos(θi). We also have

~P × ~Pi = PPisin(θi)n̂ (47)

and we add all the perpendicular components together to get∑
~P × ~Pi = ~P × ~P = ~P

∑
Pisin(θi)n̂ (48)

So the sum of the perpendicular components is zero.
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Figure 2: The total momentum ~P =
∑ ~Pi. A particular momentum ~Pi makes an

angle of θ with respect to ~P . The plane is perpendicular to ~P . The components∑ ~Pisin(θi) add to zero.
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